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ABSTRAC'

In Command and Control, the majority of decisions require the fusion of inputs

from a number of subordinate decision-makers, to arrive at a team decision. Part of the

Navy's attempt to address the issue of hierarchical decision making is the Tactical

Decision Making Under Stress (TADMUS) program. Under this program, the

Coordination in Hierarchical Processing Structures (CHIPS) experiment was conducted

at the Naval Postgraduate School during May and June, 1993. The CHIPS experiment

is described, and data collected during the experiment used to assess the impact of human

cognitive limitations on team performance.

Team performance was found to be degraded by increased stress, increased risk and

increased feedback to subordinates in the hierarchy. These effects were found to be due

to a reduced ability to distinguish between types of contact, rather than use of a less

optimal decision criterion.

It was further found that increasing the amount of information available to

subordinates increased their ability to distinguish between types of contacts, but not by

as much as is theoretically possible. There were also indications that there may be an

upper limit on the amount of information that can be successfully integrated by the

subordinates, beyond which performance declines rather than improving.
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I. INTRODUCTION

A. BACKGROUND

All complex decisions tend to be made within a hierarchical framework, in which

a central decision-maker chooses from options based on the reports of subordinate

decision-makers. This structure is to be found in business, government, and the military,

where it is a fundamental component of command and control systems. In such systems,

the decision-makers may be humans or automata, or hybrid systems of humans assisted

by computer-based decision aids.

Of particular importance in the military field is the Distributed Dynamic Decision

making (DDD) paradigm proposed in Kleinman, Serfaty, & Luh (1984), in which the

decision role is not only distributed amongst geographically separated subordinates, but

the underlying attributes on which the decision is to be made are dynamic. In such a

system, there are three levels of processing to be considered: the individual decisions

of each team member at each time of evaluating the dynamic environment, the

aggregation by the individual team member into his' final decision, and the coordination

within the team that leads to a decision by the central decision-maker. At the first level,

'Throughout this report, the masculine form of the personal pronoun has been used
without exception. No specific gender requirement or bias is to be inferred from this; the
more cumbersome combination forms such as he/she have been avoided for the sake of
readability, while the systematic alternation of gender has been avoided as having even worse
implication of bias than the use of a single form throughout.



the assessment of a dichotomous situation confused by the presence of noise is

isomorphic to the paradigm of "Signal Detection Theory" (SDT) (Pete, Pattipati, &

Kleinman, 1993:2). As further assessments are made, humans are unable to aggregate

information optimally (i.e., in the manner of Patterson and Beach's (1967) "statistical

man") because they are limited in their data processing capabilities (Pete, Pattipati, &

Kleinman, 1993:1; Mallubhatla et al., 1991). Lastly, the decisions of the subordinates

are fused, and a final team decision made. Optimization of this production of a team

decision requires more than just the optimization of decision for each individual decision-

maker, since optimal team performance requires finding a set of coupled operating points

(Pete, Pattipati, & Kleinman, 1993:1 & 1993:2; Tank, Pattipati & Kleinman, 1991).

B. SIGNAL DETECTION THEORY AND STATISTICAL DECISION THEORY

(SDT)

Signal-Detection Theory has its roots in psychophysics, with the problem of the

detectability of a signal in noise. Since "a major part of detection theory is the

application of the theory of decision making to situations in which certain waveforms

called signals may or may not be added to a random background disturbance called

noise," (Green & Swets, 1988, p. 7) the terminology and structure of detection theory

are derived from Statistical Decision Theory. The two theories have become almost

inextricably intertwined. Conveniently, they have the same acronym, and this will be

used without distinguishing between the theories.
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1. Structure and Terminology of the SDT Problem

We introduce here the notation2 that will be used to identify events and

decisions by tracking the events in the detection and report of a signal. Firstly, an

observation is made: this observation may be of noise alone, labeled "n," or of a signal

added to the noise, labeled "sn." The observer then makes a decision about what was

observed: either "yes," a signal was present, denoted Y, or "no," a signal was not

present, denoted N. The probability that a signal will be presented is P(sn), and that it

will not (i.e., that noise alone will be presented) is P(n). These are referred to as the

prior probabilities of the events sn and n, respectively, and sum to unity.

There are four possible outcomes:

1. Correct acceptance: the occurrence of sn and Y--also termed a hit;

2. Incorrect rejection: the occurrence of sn and N--also termed a miss;

3. Correct rejection: the occurrence of n and N--also termed a non-event;

4. Incorrect acceptance: the occurrence of n and Y--also termed afalse-alarm.

A pay-off may be associated with each of the four outcomes. This is a score

value, or reward, for the subject, which may be positive or negative. The payoffs for

the four outcomes are denoted V,.,, V.,N, V.,N, and V.,y respectively.

2The easier, dichotomous terminology of Egan (1975, pp. 6-20) from Signal Detection
Theory has been used in preference to the more general notation of Green and Swets (1988,
pp. 13-20) from Statistical Decision Theory.

3



The conditional probability of a Y response given an sn Lvent, P(Y sn), is

called the hit rate. It may also be written as P(Hit ' sn), to emphasize that a hit has

occurred. Since the event sn must result in either a hit or a miss, the miss rate is

1-P(Y sn). The conditional probability of a Y response given an n evern:, P(Y in), is

called the false-alarm rate. It may also be written P(False-Alarm in). Given an n event,

the response must result in either a correct rejection or a false-alarm, so the correct

rejection rate is 1-P(Y n). Thus it is seen that with the hit rate, false-alarm rate, and

prior probabilities, the rates (or probabilities) of all four outcomes are completely

specified:

P(snAY) = P(Yjsn)P(sn)
P(snAN) = [l-P(YIsn)]P(sn) (I- )
P(nAN) = [1-P(Yln)]P(n)
P(nAY) = P(Yfn)n)

The observation of the event resulted in a measurement x, the value or

magnitude of which depends probabilistically on which event occurred. In particular,

when the event n occurs, the perceived x is a sample from a probability distribution of

noise, which is also called "n." Similarly the event sn gives rise to a perceived x from

a different probability distribution, called "sn."

The posterior probability of the event sn is written P(sn Ix), and is the

probability that the event sn occurred, given the evidence x. The posterior probability

of n is defined similarly, and the two probabilities sum to one. A simple application of

Bayes rule gives:

4



P~sn•) = P(xjs)P(sn) (1-2)

P(x n)P(sn) + P(xjn)P(n)

We now define the likelihood ratio as the ratio of probabilities of the

observed x resulting from the sn and n distributions:

L(x) = P(xl5n) (1-3)

P(xln)

Dividing the numerator and denominator of Equation (1-2) by P(x 1 sn)P(sn)

gives

P(sn 4x) (1-1em)=1 (..1. P~n). (1-4)
P.x (sn))

Equation (1-4) demonstrates the relation between the posterior probability of

sn and the likelihood ratio: as the former increases from 0 to 1, the latter increases from

0 to infinity. The best estimate3 of the event that has occurred, given the observation x,

is sn if, and only if, P(sn Ix)> P(n Ix), which, from the fact that these two probabilities

are complementary, is the same as saying that P(sn Ix) >0.5. Alternatively, the odds in

favour of sn can be calculated (using Bayes rule) as

3Here we use the criterion of maximizing correct assessments. For maximization of

expected value, see the discussion in the following paragraphs.

5



ýP~fflx) _P(XIM) P(Sn)
P(six) P(4XIn) P(n) (1-5)

L(- P(sn)
P(n)

Consider the case where the prior probabilities of the two events are not

equal, or the payoffs of the four outcomes are not symmetrical. A common decision goal

in these circumstances is to maximize the expected value of the decision. The decision

Y should be made if the expected value of choosing Y, given the evidence x and prior

probabilities, is greater than the expected value of choosing N with the same evidence.

This is true if

P(snlx) > VD,N - Vy (1-6)

P(nlx) V=,y- V- N

Combining equations (1-5) and (1-6) gives the Likelihood Ratio Test (LRT):

choose Y if

L(X) > P(n) VN - V,,y (1-7)
P(sn) V3,y, - Vs,,N

2. The Relative Operating Characteristic (ROC)

The distributions sn and n are assumed to overlap to a greater or lesser

degree--if they did not, no errors should ever be made. Figure I shows two such

distributions: these in particular are equivariant normal (Gaussian) distributions, but

there is no requirement that they be so. We define x, as the value of x chosen as a

criterion, corresponding to the critical value of L(x). As higher values are chosen for xc,

the false-alarm rate will fall; however, the hit rate will also fall, as shown in Figure 2.

6
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For any given x, there is a unique hit rate and false-alarm rate. Plotting the

hit rate against the false-alarm rate, with x, as parameter, gives a curve variously

described as the Receiver Operating Characteristic or the Relative Operating

Characteristic (ROC). Again, the acronym is the same for either name, and can be used

without distinguishing between the names. This curve describes the distinguishability

between the sn and n events for the observer, without assuming a particular criterion

value. The criterion selected will determine the operating point on the ROC of the

observer. An example of the ROC generated by the distributions in Figure 1 is shown

in Figure 3. The minor diagonal, identified in the figure, is also known as the chance

line because an observer who guesses randomly would operate along this line.

A ROC that is based on use of the LRT is termed a proper ROC. For any

given false-alarm rate, the corresponding hit rate on the proper ROC represents the

maximum that can be achieved given the probability distributions of n and sn (Egan,

1975). Characteristics of a proper ROC that aid in ROC analysis are that it lies above

and to the left of the chance line, and is non-decreasing throughout; i.e., shifting the

operating point on the ROC to one with a higher hit rate can never give a lower false-

alarm rate.

For families of ROCs that are all the same shape, such as those generated by

n and sn distributions that are both normal and have the same standard deviation, a

particular curve within the family can be identified by specifying the distance along the

main diagonal between the ROC and the minor diagonal. This distance is called d', and

is the distance between the means of the n and sn distributions, measured in standard

9
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deviations of the n distribution:

d' - PT - 1L (1-8)
0
1k

When the hit rate and false-alarm rate are converted to normal-deviate

values,4 the ROC is a straight line for normal n and sn distributions (Swets, 1986:1 &

2), and is parallel to the chance line when the distributions are equivariant. Thus for

equivariant normal distributions, an observed d' can be readily calculated as

dl = zI&-Zr-sb,,Im (1-9)

When the distributions are normal but not equivariant, the ROC is not parallel to the

chance line in plot of Z-scores, so equation (1-9) must be replaced by

d R ZHik - ZPaW..l,
asm

(Macmillan & Kaplan, 1985).

3. Multiple Observations.

When the decision is based not just on one observation, but on several

observations, each drawn from the same distribution, the parameters of the SDT problem

change. Several different models may be used to describe the change in decision

strategy, but in general the results are the same. The more psychophysiological model

proposes an integration of the observations, and a decision based on the integral (Green

4For example, P(Hit sn) would be replaced by z•, where P(Hit sn) = I1-(zb). 4(z) is
the cumulative standard normal distribution.

11



& Swets, 1988, p. 238, and Swets, et al., 1959). The average of N samples from the

same normal distribution will have the same mean as the underlying distribution, but the

variance will have been reduced by the factor N. Thus, from equation (1-8), d' will have

been incicased by the factor -IN. The more statistical model states that the likelihood

ratio for the N observations together is the product of the likelihood ratios of the

individual observations, assuming that they are independent (Egan, 1975, p. 77). This

new likelihood ratio can then be used in the LRT. The significance of this dichotomy

with respect to the observed data is discussed in Chapter V.

C. COGNITIVE LIMITATIONS

Thus far we have discussed how an optimal observer, with knowledge of prior

probabilities of the two possible events, knowledge of the probability distributions that

could have given rise to the observed datum, knowledge of Bayes law and its

ramifications, and the ability to process all this knowledge--including calculation of

values with the Gaussian probability density function, can formulate his rule for optimum

performance. Evidently, humans can not respond in this way. Even in gambling, when

the distributions and their implications have been well studied by practitioners with a

strong interest in doing well, optimum performance cannot be achieved immediately.

There exist a series of card counting schemes for Blackjack, increasing in expected pay-

off and cognitive demand, even the simplest of which takes considerable mental effort

12
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and practice, amounting to the dedication of one or two months to the study of the

method.5

The human subject has cognitive limitations, which should be accounted for in any

theory on decision-making. Pitz summarizes the types of limitations:

Failures to respond consistently might be traced to one of two sources. First,
there may exist limitations on the kind of information processing of which the
person is capable. ... A second source of errors may be the problem solving
strategies that a person brings to a task. Such errors are not due to fundamental
limitations on information processing capacity, but rather to the strategies that
people use in approaching the task. (Pitz, 1980, p. 78)

Perhaps the most fundamental limitation on information processing is the general

inability of the mind to handle more than about seven chunks ir, short-term memory, or

seven channels in discrimination tasks. These limitations are distinct: the first is the

most items that can be recalled after a brief interval when rehearsal is prevented; the

other is the maximum number of different stimuli that can be distinguished. The fact that

in both cases the limit is the "magical number seven" is probably coincidental. (Miller,

1956)

Human subjects are, in general, poor at judging statistical parameters of

distributions, as described by Peterson & Beach (1967). Proportions are assessed well,

p:xricularly when they are not extreme. There exists conflicting evidence about whether

high proportions tend to be over-estimated or under-estimated. Estimation of meamis is

also accurate, although accuracy diminishes with increasing sample size and variance.

5Interview between W. Snow, Maj., USAF, Naval Postgraduate School, Monterey, CA,
and the author, 3 May, 1993.
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Judgments of variances are poor: reported values are not related to squared deviations,

instead being based on much lower powers of the deviations, and are strongly influenced

by the mean of the sample--the higher the mean, the smaller the reported variance.

When making inferences about populations, such as whether a sample comes from one

distribution or another, subjects are uniformly conservative in assessing the value of the

evidence of the information provided by the sample (see also Tversky & Kahneman,

1974). Additionally, aggregation of evidence from several samples is extremely poor,

being very conservative.

Many biases evident in decisions are described by Tversky and Kahneman (1974),

of which only one will be listed here. Despite knowledge of the prior probabilities of

different outcomes, subjects did not always use this knowledge to modify their estimate

of posterior probabilities. For example, subjects were asked to assess the probability that

an individual (from a group of engineers and doctors) was an engineer, given a

description of him. The subjects were told proportions for engineers and doctors within

the base group, thus providing them with prior probabilities. Yet this prior probability

had no influence on the subjects' assessments. Even when the description had no

distinguishing information at all, the response of subjects was the same whether the prior

probability of engineers was 0.3 or 0.7.

Finally, the biases of recency and primacy, which were originally described in

relation to memory (Glass, Holyoak, & Santa, 1979, pp. 148-149), are also to be found

in decision experiments. Primacy is the excessive influence on the decision of data

presented at the start of a trial; the subject anchors on the initial data, and then uses
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insufficient adjustment to account for later data (Tversky & Kahneman, 1974). Recency

is the strong influence on the subject's decision of the most recently occurring data.

D. HIERARCHICAL PROCESSING

Actual decisions in complex environments are generally made by a team, which is

usually arranged hierarchically: in the simplest case as a central decision-maker, provided

estimates by subordinates. Each member of the team has access to information that is

probabilistically related to the group decision. The local ROC of each subordinate,

which expresses his hit and false-alarm rates with respect to his own task, can be

extended to a perceived ROC, which expresses his expertise with respect to the team

task. The behavior of the team can then be summarized by a team ROC: the

relationship between hit and false-alarm rates of the team as a whole. The optimal

behavior of the team requires each team member to adapt his strategy to the expertise of

the other members, the team goal, and the relationship between his local information and

the team goal. (Pete, Pattipati, & Kleinman, 1993:1)

E. OBJECTIVES

The experiment analyzed in this thesis was conducted at the Naval Postgraduate

School during May and June, 1992, and titled Coordination in Hierarchical Information

Processing Structure (CHIPS). The goal of the experiment was to validate normative

model predictions about hierarchical decision-making in a dynamic, distributed scenario.

Since the hierarchical aspects of the experiment are being fully analyzed elsewhere
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(principally at ALPHATECH, Inc. and the University of Connecticut), they will not be

considered here. The goal of this thesis is to examine the subordinate decision-making

process, and attempt to describe cognitive limitations that lead to performance below the

optimal achievable.
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II. DESIGN OF THE EXPERIMENT

A. THE CHIPS PARADIGM

The CHIPS experiment was designed as a functional simulation of the Anti-Air

Warfare components of a surface ship's Combat Information Center. A team of subjects

is organized as four decision-makers, one of whom is the Tactical Action Officer (TAO),

who leads the team and makes the team decision. Supporting him are three subordinates,

designated as the Identification Supervisor (IDS), the Tactical Information Coordinator

(TIC) and the Electronic Warfare Supervisor (EWS). The goal of the team is to

determine whether a target of interest is hostile or neutral, before the time limit of the

trial is exceeded.

The subjects are all presented with a display simulating a radar picture, on which

aircraft icons appear and move. One icon is designated the target of interest by the

computer running the simulation. It is clearly distinguishable by its unique icon. The

subordinates can probe the target, in order to measure certain attributes about the target.

Each subordinate measures a different attribute of the target. After a ten-second delay

(to limit the probe rate) the result of the probe may be read by the subordinate, or the

target may be probed again. When the subordinate chooses to read the results of his

probes, he opens a window on his display, in which are presented the results of his

probes, up to a maximum of the five most recent. If a probe completes its ten second

wait while the window is open, its information is not displayed until the next time the
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subordinate opens the assessment window. The information presented to the subordinate

is corrupted by "noise," which is simulated by adding to the parameter a random value6

before making it available for display. On the basis of the information displayed, he

must make an assessment about the nature of his parameter, which is a dichotomous

choice. No further probes may be initiated until the assessment has been made. Once

the subordinate makes an assessment, this assessment becomes available to the TAO.

The subordinate assigns a confidence to his assessment, on an integer scale of 1 to 3, 1

being the lowest confidence.

Each subordinate is attempting to determine whether his own parameter is

indicative of a hostile target or a neutral target. The TAO may open a window on his

display on which the most recent assessments and confidences of the subordinates is

displayed. As with the subordinates, new information received while this window are

open is not displayed. On the basis of the information reported by the subordinates, the

TAO makes an overall determination of whether the target is hostile or neutral. At any

point during the trial he may designate his assessment as final, which ends the trial. The

actual state of each attribute and the target as a whole are displayed to the team at the

completion of the trial. The TAO was prompted (by the computer) to make an

assessment every 30 seconds.

The state (hostile or neutral) of the three attributes of the target are independent.

If two or three of the three are hostile, then the target is hostile. Otherwise (i.e., two

'The EWS information is corrupted differently. Full details for each subordinate
are presented in the discussion of individual subordinate roles in section D. 1.
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or three attributes are neutral) the target is neutral. Thus, the actual state of the target

is determined by a majority rule of its actual attributes.

B. EXPERIMENTAL SETUP

1. Physical Setup

The simulation was conducted on a network of four Sun workstations,

running a version of the DDD-II simulator specifically developed for the CHIPS

experiment. Each subject's area contained a graphics display screen, keyboard, mouse,

and intercom headset. The areas were separated within a single room, to attempt to

provide some isolation, and prevent un-monitored communication between the subjects.

The keyboard was not used except to start each trial. All probes and assessments were

accomplished with the mouse. Subjects were permitted to use pencil and paper, although

this was not provided, and none took advantage of the permission. Subjects were not

permitted to use calculators.

The intercom system connected all the subjects together--when any one spoke,

he was heard by all. Verbal communication was allowed between all the subjects without

constraint, with the exception that for some trials te TAO was not allowed to brief the

subordinates on his assessment of the target (see section D.2). To assist in the conduct

of the experiment, and record frequency of types of verbal communication, each subject

was monitored throughout the experiment by an observer.
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2. Test Subjects

The subjects were 24 students from the Joint Command, Control and

Communications curriculum at the Naval Postgraduate School, in Monterey, California.

The 23 military officers and one National Security Agency employee were divided into

six teams of four subjects, based on scheduling constraints. Assignment of function

within the team was made by the team members themselves.

Training on the conduct of the experiment consisted of three stages. First,

the subjects were provided with written material outlining the background behind the

scenario assumed by the experiment. Second, a one hour training session7 reiterated the

written material, stressed the roles of each subordinate and the relation between

subordinate task and team goal, and answered any questions that the subjects had.

Finally, 24 trials were conducted in two, one-hour training sessions on the actual

hardware, during which time the subjects were coached on the mechanics of their tasks

by the observers. This exposure allowed the teams to discuss and decide on tactics to

be employed, particularly regarding communications.

7Details of experimental design were intentionally omitted. The variability of the
distributions sampled to impose noise on the subordinates measurements was not
briefed to the subjects (even the observers had to resort to examining the source code
to get a definitive answer, since the various sources of information available to them
differed in their details). The statistical design of the experiment, including the
existence of distractor trials, was not briefed. However, the prior probabilities of
hostile and neutral parameters was, in general terms, made clear to the subjects as
being 0.5 each.
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C. ASSUMPTIONS

Two assumptions were made about the structure of the experiment. Firstly, it was

assumed that the training sessions were sufficient to preclude observing a learning-curve

effect in the experimental data. Initial trials by the observers indicated that the game can

be well-learned in an hour. By distributing the two hours of training over two one-hour

sessions the training was very effective, with minimal loss of skill between completion

of training and the experimental session. Subject perception of completeness of training

was measured with a questionnaire. It was found that, given the average gap of five days

between completion of training and the experimental session, the first one to three

experimental trials involved some relearning of the necessary skills. Future experiments

should have about five refresher trials, known as such by the subjects, at the start of the

experimental session.

Secondly, it was assumed that the subjects were willing and enthusiastic, and that

the data were therefore not affected by half-hearted guessing on the part of the TAO or

his staff. A reward was promised for the top-performing team to help to alleviate this

concern. During the experiment, two TAOs accidentally recorded a few assessments as

final inadvertently, and were surprised to see that they had made a successful guess. One

of them continued this with some further trials, and was in general successful at

guessing. However, his team achieved the lowest score of the three.

Several assumptions were made about the data, which are described in detail in

Chapter IV when the results are discussed.

21



D. EXPERIMENTAL DESIGN

1. Subordinate Roles

a. Identification Supervisor (IDS): Determination of Radar Cross-section

The team member performing this task received two measures as the

result of his probe of the contact. These two measures, nominally representing a height

and width, were first multiplied together, then the product evaluated. Large contacts had

a radar cross-section with a mean of 60, which was an indication that the target was

neutral;' small contacts had a radar cross-section with a mean of 40, which was an

indication that the target was hostile. In making their determinations team members

were cautioned to remember that they are receiving noisy measurements. It was also to

their advantage to probe for measurements more than once to help them "average out"

noise in order to determine the truth. To provide the measurements, two random

processes were employed. The first process selected a number from either a distribution

of small or large targets, as designated for the scenario. The small distribution had a

mean of 40, the large had a mean of 60, and each had a standard deviation of 3. Like

all the Gaussian distributions used in CHIPS, the distribution was truncated at two

standard deviations 9. The second random process determined how much noise was

'Note that size was only one indication: if size indicated neutral, but the other two
indications indicated hostile, the target was hostile. Despite the attempt of the
observers to make this perfectly clear during the training, it was still not understood
(and even argued) by some subjects during the experiment. See section D, p. 37.

9Examination of the source code reveals that this is achieved in the following
way: If the result of the random number draw (from a generator that produced
normally distributed random numbers) gave a result more than two standard
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associated with the measure, by adding a random number from a Gaussian distribution

with a mean of zero and a standard deviation of 20. To provide the two measures

expected by subjects, the noise-corrupted single number was factored into two numbers.

This was accomplished by selecting a random number within the bounds of the single

number and dividing the single number into the random number to produce two numbers.

The product of these two numbers equals that of the single noise-corrupted number. The

numbers generated in this fashion were provided to the subjects as measures of radar

cross-section height and width.

b. Tactical Information Coordinator (TIC): Determination of Altitude Rate

of Change

The member of each team performing this role was provided with a

single altitude estimate (in feet) and time of measurement with each probe. When the

probe window was first opened an initial altitude measure and the new altitude measure

were displayed. In this way a determination of altitude rate of change could be made

starting with the first probe. Thereafter, a short history of altitude measures was

maintained and displayed along with the new measure. The rule of the altitude rate of

change described to the team member stated that if the altitude of the contact appeared

to decrease by about ten feet per second the contact was assumed to be flying

approximately level, which was an indication that the target was neutral. However, the

favoured attack profile of the enemy was known to be a descent of about 20 feet per

deviations above or below the mean, the result was replaced with the mean plus or
minus two standard deviations, respectively.
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second. To produce the altitude estimates, two Gaussian distributions were maintained.

One distribution had a mean descent rate of ten feet per second and the other had a mean

descent rate of 20 feet per second. Each distribution had a standard deviation of 3 feet

per second. For a given condition, the appropriate distribution was sampled and a noisy

descent measure selected. Based on the true previous altitude, the time elapsed, and the

new noisy rate, a new, true altitude estimate was computed. Yet another Gaussian

distribution was sampled (mean of zero, standard deviation equal to 90 feet) to determine

the amount of noise to be associated with the altitude estimate.

c. Electronic Warfare Supervisor (EWS): Determination of Radar

Emission

A probe issued by the team member performing this role returned a

seven-bit binary number. This measurement was compared to the known radiation

signature of hostile aircraft10 to see if the contact was radiating or the sensor was merely

reporting noise. The known signature was another seven-bit number that remained

constant throughout the experiment. To provide radar signature estimates, the true

signature was corrupted by noise. The noise corruption was achieved by deciding

whether each bit of the true signature was to remain unchanged or be flipped by noise.

If the radar was on, then each bit of the true signature was conditioned by a Bernoulli

trial where the probability of being correct was 0.7. That is, 70% of the time the bit

remained unchanged and 30% of the time the bit was flipped to the other state (i.e., 0

"0Not all hostile aircraft radiated, and some neutral aircraft did radiate: see note 8
on p. 22.
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becomes 1 or 1 becomes 0). If the radar was not on, then each bit was generated

randomly, conditioned by a Bernoulli trial with equal probability of a one or a zero.

2. Independent Variables

Three independent variables were manipulated in the experiment: information

structure, risk, and stress.

a. Information Structure, or TAO Update

This variable had two states: update or no update. In the update

condition, the TAO was directed to tell the team, over the intercom, what his assessment

of the target was at least every thirty seconds (i.e., when he logged an assessment on the

computer). In the no update condition, the TAO was not allowed to inform the

subordinates what his assessment was at any time during the trial (communication

between trials was unrestricted and not logged by observers). Two TAOs, while not

briefing the subordinates on their assessments during "no update" trials, did frequently

report the individual indications of each subordinate as shown in the display window on

their screen (e.g., "I'm showing large, level, radar on").

b. Risk

This variable also had two states: high risk and low risk; the values in

the payoff matrix depended on the risk state, in the following way: in low risk trials,

a correct decision resulted in a score of 0; either a false-alarm or a missed detection (the

two types of incorrect decision) resulted in a loss of one point; in high risk trials, the

payoff matrix differed only in that the cost of a missed detection was five points, while
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the cost of false-alarms remained one point. In high risk trials the targets were said to

be carrying chemical or biological weapons, rather than the conventional weaponry of

low risl, trials. Thus a perfect score would be 0, and as performance became worse, the

score became more negative. The team task was to maximize (make as close to 0 as

possible) their total score accumulated across all the trials.

Initial trials conducted to train the observers on the mechanics of the

experiment indicated that the risk factor was not even noticed by subjects. In order to

give the subjects the incentive necessary to make the risk meaningful, the scores (0, -1

or -5) were accumulated over all trials. The team that performed best was to be

rewarded. The number of points lost for each type of error was made known to the

subjects, so that there could be no question but that the costs assumed by the model were

the same as those perceived by the subjects. The total scores of teams who had already

completed the experiment were posted, to provide extra incentive. This may not have

been the best policy, since at least one team tried hard until they had already lost more

points than the team composed only of women, at which point the TAO lost further

incentive for good performance.

c. Time Pressure, or Stress

Stress was manipulated by varying the time available in which to make

the assessment of the target. There were three levels of stress: low stress trials lasted

just over three minutes, medium stress trials just over two minutes, and high stress trials

just over one minute. The time remaining was prominently displayed on each players

screen. If no final assessment was made before the. time expired, points were lost as for
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a missed detection regardless of target classification. This only occurred in three of the

192 trials.

3. Scenarios and Statistical Design

The two values of size Oarge and small), two values of descent rate (level and

descending), and radar emission (on and off) combine to give eight possible

combinations, which are shown in Table 1. An overall assessment of neutral is correct

whenever two or more of the measures indicate neutral.

TABLE I: ALL POSSIBLE COMBINATIONS OF TWO LEVELS EACH OF
RADAR CROSS PECTION, ALTITUDE RATE, AND RADAR EMISSION

kadar Cross
Classification Section Altitude Rate Radar Emission

1 large I level 1 off

I Neutral I large 1 level 2 radiating
I large 2 descending I off
2 small 1 level I off
1 large 2 descending 2 radiating

2 Hostile 2 small I level 2 radiating
2 small 2 descending I off
2 small 2 descending 2 radiating

While all situations were presented to the subjects, those corresponding to the

top line and bottom line of the table were not used in the statistical analysis of team

performance, in order to examine only cases with a high level of ambiguity. This means

that a mistake by any one subordinate could cause the team to make the wrong decision.

There were two trials from the top and bottom lines in each set of 32 trials presented to

the team.
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The two levels of information structure, two levels of risk, and three levels

of stress combine to determine 12 experimental conditions. Each condition was

presented twice, once with a neutral target, and once with a hostile target,"1 giving 24

trials across which the independent variables were balanced. The remaining eight

distractor trials consisted of the two trials for which all three subordinate indications

were the same (either all hostile or all neutral) and six more random scenarios. The 24

balanced experimental trials were the only trials analyzed when examining team

performance, in general. When analyzing subordinate performance individually,

however, all 32 trials have been used. This was necessary to increase the amount of data

available. The effect of the independent variables was not analyzed for subordinates.

Therefore there was no necessity for them to be balanced for each team. Balance would

have been preferable, since there is evidence that they did have an effect.

4. Measures

Three general types of dependent variables were collected during the

experiment: data recorded automatically by the DDD simulator, data manually recorded

by observers, and self-report measures derived from questionnaires completed by the

subjects. Of the first category, every probe and assessment during the progress of the

game was recorded in an Event Log file. The most important values from each trial

were summarized in a Dependent Variable (DEP) file. The format of each file is

described in Chapter III.

"See section C.2, p. 36 for the one exception.
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Two types of observation form were used to record observations during each

trial, one for subordinates and one for the TAO. On these forms instances of supplying

or requesting information were tallied by type of information and the player addressed.

In addition, team bolstering comments and action requests were tallied, as were cases

where the TAO provided updates to the subordinates on his hostility assessment when he

was not supposed to, or failed to provide updates when he was required to. The data

from the forms and questionnaires have not been used for the present study, so examples

of these are not shown.

Three questionnaires were used. During training each subject indicated on

a scale how well trained he felt after every three trials. After each experimental trial an

adaptation of the NASA TLX bipolar rating scale was used to measure perceptive

workload and stress. After each group of eight trials, a Post-Session questionnaire was

used to measure subject perception of performance. At the end of the experimental

session, each subject completed a Debriefing questionnaire.

Two measures of effectiveness have been used in performing the data

analysis: proportion of correct assessments and d', the distance from the chance line to

the ROC. The proportion of correct assessments is affected not only by the ability to

distinguish between the n and sn distributions (i.e., the distributions which produce

hostile and neutral parameters), which is measured by d', but also by the effectiveness

of the operating point on the ROC (i.e., the critical value against which the likelihood

ratio is compared). Since the teams were operating to minimize cost (achieve the best

score, which is the score nearest to zero), the cost would perhaps have been a better
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measure of the optimality of team performance. However, the distribution of scores is

not well defined, so that the statistical tests that could be used would be less powerful'2.

Additionally, for the low risk trials, the goals of maximizing score and maximizing

proportion of correct assessments are the same, since the payoff matrix is symmetrical.

The utility of the measure d' is discussed further at the start of Chapter IV.

"2For a further discussion of the utility of score as a measure, see note 16 on p.
46.
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IM. DATA DESCRIPIMON

A. EXAMPLE OF RAW DATA

Appendix B presents samples of the raw data that was automatically collected by

the CHIPS software. These data consist of two files which were created for each trial:

the Event Log File and the Dependent Variable File. In addition to the data which were

automatically generated, each subject was observed during every trial, and answered

questionnaires. The observations of the subjects gathered information about:

1. Information transfers;

2. Information requests;

3. Bolstering comments;

4. TAO failures to comply with update requirements.

Questionnaires were completed by the test subjects after each trial, after each

session (8 trials), and after the entire experiment (32 trials). The data provided by the

questionnaires consisted of:

1. Self evaluations;

2. Teammate evaluations;
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3. Team evaluations including:

- Coordination
- Amount of communication
- Communication discipline
- Helpfulness of other team members

4. Stress level evaluations.

B. DATA CODING SCHEME

1. Dependent Variable File

The example provided in Appendix B may be interpreted with the following

notes.

a. Experiment Condition

The experiment condition is a five digit number describing the scenario,

interpreted as shown in Table IH.

b. Probe Rate

The rate at which the subject probed the target, in probes per second.

c. Other Codes

Neutral: I

Hostile: 2

Low confidence: 1

Medium confidence: 2

High confidence: 3
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TABLE II: INTERPRETATION OF EXPERIMENTAL CONDITION

Digit Variable Coding
Information 1: No update

1 Structure 2: Update

1: Conventional (miss weighted same as false-
2 "• Risk, alarm )

2: Chemical (miss weighted five times as
heavily as a false-alarm)

1: Low - 3 minute trial

3d Stress 2: Medium - 2 minute trial

3: High - I minute trial

True 1: Neutral
Classification 2: Hostile

Value Size Descent Radar
Rate

1 Small Level Off

2 Large Descending Off

Target 3 Large Level On
5t Parameters 4 Small Descending Off

5 Small Level On

6 Large Descending On

7 Large Level Off

8 Small Descending On

2. Event Log Fdle

The log file is meant for internal usage, and therefore the meanings of the

numbers in this file are different from those in the experimental description. Two types

of log messages are recorded in the CHIPS experiment:

1. Probe: code 2010

2. Fusion/Assess: code 2013
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The formats of these messages are as follows:"3

a. Probe

The C language code that generates a probe entry is as follows:

fprintf(logfp, "%d %d %lf\n", din, message_code, currenttime);
fprintfflogfp, "%d %d\n",platformid, ENDNOTIFIER);
fprintf(logfp, "%f %f %fin",weapon[O],weapon[1],weapon[2]);
fprntf(logfp, "%d %d %f %fAn", tasknumber, dm_flag, delay, expertise);
fprintf(logfp, "%d\n", messageflag);

where:

dm - the decision-maker who issues the command.
message_code - equals 2010 for "probe"
current-time - the time when the command is issued
platformid - not used in CHIPS
ENDNOTIFIER - not used in CHIPS
weapon[i] - not used in CHIPS
task-number - not used in CHIPS.
dmflag - not used in CHIPS.
delay - time delay of "probe", always 10 seconds in CHIPS.
expertise - not used in CHIPS.
message flag - not used in CHIPS.

b. Fusion/Assess

The C language code that generates a fusion (assessment) entry is as

follows:

fprintf(logfp, "%d %d %lf\n", dim, message code, current time);
fprintf(logfp, "%d %d %d %d %d\n", from_din, to din, taskid, classid, confidence);
fprintf(logfp, "%f %f %f\n)",attributes[0],attributes[l],attributes[2]);
fprintf(logfp," %d\n", flag);

`3E-mail conversation between Anlan Song, University of Connecticut, and the
author, 15 March, 1993
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where:

dm - the decision-maker who issues the command.
message code - equals to 2013 for "Fusion/Assess"
current-time - the time when the command is issued
from-dmn - equals to dm in CHIPS
to_dm - the decision-maker to whom the message is sent

= 0, subordinates send message to DM0 (the leader)
= 4, DM0 (the leader) logs information to the system.

task id - not used in CHIPS.
classid - estimated target identification

=0 neutral
- 1 threat

confidence - the confidence level of the decision.
attributes[i] - not used in CHIPS.
flag - not used in CHIPS.

3. Questionnaires and Observation Forms

The data from these forms were not used here for analysis, so the coding

scheme is not explained here.

C. DATA PROBLEMS

1. Event Log Fide

There were an insufficient number of runs for each team to be able to analyze

d' for each team at each number of probes.

There was an unbalanced distribution of targets for the IDS and EWS with

low stress. Specifically, team E IDS had no small targets at low stress, and teams A and

B had very few radiating targets at low stress. Consequently, it was not possible to

calculate d' accurately for the IDS and EWS by team based only on low stress runs.

Combined data were used from all stress levels which limited the number of probes for
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which useful data existed, since there were only about four probes during high-stress

trials, and eight probes during medium-stress trials.

Not many players made more than seven probes, even in low stress runs.

Team F, in particular, made very few probes in each trial.

Not infrequently, even when a significant number of data existed, there were

either perfect hit rates or false-alarm rates (1.0 or 0.0, respectively), which could not be

transformed to Z-scores. The hit or false-alarm rate was replaced with 0.99 or 0.01

respectively in these cases.

Teams A and B EWS had perfect hit rates, but very high (>0.75,

consistently) false-alarm rates, indicating a quite extreme criterion in use; consequently

the calculated d' is prone to inaccuracy.

2. Dependent Variable File

It was found that with the software provided by the University of

Connecticut, some files would be over-written by subsequent trials that had the same

scenario. The scripts directing execution of the CHIPS software were modified to

remove this problem.

The data could not be fully balanced with the scenarios as provided.

Specifically, team B was given no neutral target in the low stress, low risk, no update

condition. Two trials with hostile targets in this condition were used for team B to

balance the data.
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D. OTHER PROBLEMS

Of the 24 test subjects (6 teams of 4 players each), one player received no

classroom training.

Two of the six teams (A & D) received the first hour of hands-on training prior to

classroom training. Team A completed 15 practice trials during this first hour of

hands-on training, then the remaining nine practice trials during the second hour.

Due to a power failure, one team (F) received only eight trials during their first

hour of hands-on training. Subsequently, team F was scheduled for and received the four

remaining trials from the first hands-on training session on a second day, and the

remaining 12 practice trials on a third day.

Some of the team training sessions were conducted in a hardware "consolidated"

environment (i.e., the stations were not in separate bays) while others were conducted

in the experimental format of separate subordinate and TAO locations.

Several of the teams maintained a distinct level of confusion concerning the

categorization requirements of an unknown contact based on the three technical or sensed

parameters. While it was clearly briefed and demonstrated during classroom and

hands-on training that only two of the three ground truth parameters had to fit the hostile

criteria for the contact to be considered hostile, some players maintained a belief that it

required three of the three to be hostile. Additionally, some players felt that if their

fellow subordinates had a high confidence in the identity of the target, then it was

incumbent upon them to "fit" their classification to agree with their comrades.

Interesting as well, one of the players felt that if two of the three subordinates were
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correct in their assessment, then regardless of the third subordinate or the TAO's final

assessment, the team would be scored as correct. All the TAOs, however, knew

correctly the definitions of hostile and neutral contacts.

38



IV. ANALYSIS

The analysis of the experimental results falls into two groups. First, there are

results .of team performance, based largely on the summary data available in the

Dependent Variable File. These results generally use the proportion of correct

assessments. Secondly, the performance of the individual subordinates (by role) was

examined from an SDT view-point, to look for influence of cognitive limitations.

Examination of the Log File was required for these analyses. Owing to small sample

sizes, statistical analysis could not always be used to show a level of significance of these

results. Where such analysis was performed, the detailed results are shown in a table

(with subsequent notes) in Appendix A: Statistical Analyses. In the remaining cases, the

results are, by themselves, at least indicative, if not fully persuasive.

A. RESUPLTS BY TEAM

Since several analyses performed on these data require balanced number of trials

between the three independent variables, these analyses are based on the balanced set of

24 trials for each team, giving a total of 144 trials.

There is no a priori reason for supposing that the team ROC curve is symmetrical

about the main, or negative diagonal (characteristic of discrimination between two equal

variance normal (Gaussian) probability density functions (Swets, 1986:1)).

Consequently, the best index of discrimination performance would be A, the area under

the ROC (Swets, 1988), rather than d', the distance from the minor diagonal to the ROC
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along the main diagonal. For symmetrical ROCs, d' and A are directly related kEgan,

1975, p.81), so d' may be used as a measure of discrimination performance. Calculation

of A generally requires use of a computer, given sufficient points to deflnc the ROC.

Obtaining several points on one ROC may be accomplished directly, by requiring the

observer to adopt several different decision criteria, or, more efficiently, by use of a

rating scale of, say, five levels (Swets 1986:2). This allows a single group of trials to

be used to derive several points on the RG,2, using the procedure outlined in Green and

Swets (1988, pp. 99-103).

The confidence level in the CHIPS experiment provides six criteria (from high

confidence neutral, through medium and low confidence neutral, low and medium

confidence hostile, to high confidence hostile). However, the very small number of trials

that results from dividing the data into six groups gives points that are not sufficiently

accurate for calculating A; additionally, the confidence levels were not well used by the

TAOs (based on personal observation), frequently being left at the lowest level simply

to save time. Of the 189 trials where a final team (i.e., TAO) assessment was logged

(time ran out before a final assessment was made in 3 trials), 116 had low confidence,

71 had medium confidence, and only 2 had high confidence. This would provide at best

a four-point ROC.

A single point in ROC space does limit the ROCs which may pass through it, since

a proper ROC is strictly non-decreasing (Egan, 1975, p.40). These bounds can be used

to calculate the measure A', which is also an appropriate measure of performance (see

Norman, 1964). However, the calculation of d' is much more straight-forward than A

40



or A', and for ROCs that are only mildly asymmetrical, is still adequately indicative of

performance.

1. Comparison to Chance Performance

Team performance was shown to be close to, but, in at least some cases,

slightly better than could have been achieved purely by guessing. The number of correct

initial and final correct assessments for the teams individually and together are shown in

Table III. The corresponding d"s for all teams together are also shown. The critical

value of number of correct assessments is shown, based on the cumulative binomial

distribution14 .

On the first assessment of each trial, the six teams together made the correct

assessment in 82 of the 144 trials. This is significantly better than chance performance.

By the end of the trial, performance was basically unchanged (certainly no better): the

correct assessment was made in only 81 of the trials. This is also better than chance, but

it is worth noting that the critical value for sigmficance at p=0.1 is 80. The ROC also

appears to be unchanged between initial and final assessments: d' was a little under 0.35

in both cases.

At the team level, teams A, B, and F performed significantly better than

chance on their initial assessments, but declined in performance to a level not

4̀The critical value shown in the table is the value of x which would give 1 -
B(x;n=24,p=0.5) < 0.1 for each team, or 1 - B(x;n=144;p=0.5) < 0.1 for all

teams, where B(x;n,p) is the cumulative binomial distribution, x is the number of
"successes," n the number of trials, p the probability of "success," and 0.1 the
significance level of the test (a).
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TABLE III: NUMBERS OF CORRECT ASSESSMENTS

Team All
A B C D E F teams

Number of Initial 15 17 11 13 11 15 82
correct

assessments Final 13 13 11 16 15 13 81

Critical value (p=0.1) 15 15 15 15 15 15 80

Initial 0.349
d [Final 0.338

significantly better than chance by their final assessments. Team C remained constant

between initial and final trials, at just under 50% correct. Teams D and E both

improved significantly between initial and final trials (p =0.1; see Appendix A, p. 92),

from chance level to a level significantly above chance (p =0.1).

It might be postulated that the very successful initial assessments for teams

A, B, and F are the result of delaying longer (and thus obtaining more subordinate

reports, with increased accuracy) before making the initial assessment. The TAOs were

directed to log an assessment at least every 30 seconds, and so the initial assessment

should have been made at the 30 second point, with absolutely no more than three probes

available to the subordinates on which to base their reports. Table IV shows the mean

time until the first TAO assessment, with standard deviations. Also shown in Table IV
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are the mean number of probes that subordinates had made, and on which the reports

made to the TAO were based, at the time of his first assessment"5 .

TABLE IV: TIME AND PROBES AT FIRST ASSESSMENT, BY TEAM

Team: A B C D E F
"Time of Mean 39.56 46.30 40.19 43.03 42.09 58.78
First TAO
assessment Standard

deviation 7.67 6.80 5.44 5.25 7.22 5.63

Number of
Sub- Mean 7.84 9.53 6.87 8.64 6.84 9.04
ordinate Standard
Probes deviation 1.78 1.68 1.15 1.17 1.72 1.34

The times to first assessment did vary significantly between the teams

(p<0.01): team B was significantly (p=0.05) greater than A and C, and F was

significantly greater than all the other teams (see Appendix A, p. 94). The number of

probes on which the initial assessment was based also varied significantly between the

teams, with teams A, C, and E forming a low group, and B and F a high group. The

TAO in team F consistently took longer for all his assessments, with an average

assessment rate close to one per minute, where the other TAOs were closer to two

assessments per minute.

Figure 4 shows the average time (beyond 20 seconds for clarity of

presentation) of the first TAO assessment, the number of subordinate probes at first TAO

assessment, and the number of correct initial TAO assessments (i.e., combining Tables

"13Obtaining these values required examination of the Log Files.
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III and IV). This figure gives a strong impression of a relation between all the measures,

but as detailed in Appendix A, p. 96, there is no significant relation to be found with

time to the first probe. However, the number of subordinate probes is significantly

related to the number of correct initial assessments (r=0.88, p<s0.1, see Appendix A,

p. 99).

This result illustrates a general rule that will be seen again when considering

the individual subordinate performance. There is a strong correlation between the time

during a trial at which an assessment is made and the amount of information on which

that assessment is based, as represented by the number of subordinate probes. For all

the subordinates together, the correlation coefficient r=0.95, with 3602 degrees of

freedom, which is significant at p-40.01. However, measures of accuracy, in this case

the number of correct initial assessments, are not in general related to the time in the

trial, but are related to the number of probes available.

2. Effect of Independent Variables

The effects of the three independent variables individually on team

performance are shown in Table V. The proportion of correct assessments is used as a

measure of the accuracy of team performance. Details of the statistical analysis of

significance of the differences are presented in Appendix A, p. 99.

When the TAO provides updates, performance degraded. The difference is

significant only at p=0. 15, so rejection of the null hypothesis of no effect by TAO

update can not be confidently justified. A similar, small decline in performance when

the TAO provides updates was also seen in Gough (1992). It is important to recall that
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TABLE V: AVERAGE PERFORMANCE VS. THREE INDEPENDENT
VARIABLES

Proportion Proportion Proportion
Correct d' Correct d' Correct d'

No 0.597 0.50 0.611 0.57 0.687 1.12
Update Risk Stress I
Update 0.528 0.18 High [ T1 Med.

Risk Stress 0.562 0.34

High 0.437 -0.36
Stress I_ I

this result is based on 24 balanced trials for each team, in all of which only two of the

three subordinates had indications consistent with the actual hostility of the contact. Thus

the subordinates were assessing indications that were conditionally independent. Higher

risk also degraded performance' 6, and this result was significant at p=0.1. As stress

increased, performance again fell, also significant at p=0.1. These results are shown

graphically (along with the change in d') in Figure 5.

The question arises whether the decline in performance is caused by a change

of the team ROC, or a shift in operating point on the same ROC. Use of an optimal

decision strategy by the TAO would cause the team ROC to be determined not only by

"6For risk, it could be argued that proportion of correct assessments is not the best
measure, since the team is operating to minimize cost rather than maximize
proportion of correct assessments. For comparison to the data on proportion of
correct assessments, it should be noted that the average score in low risk trials was
-0.389, while on high risk trials it was -0.931. For complete interpretation of the
significance of this change, it would need to be compared to the expected value
obtained by an optimal (normative) observer team, which is beyond the scope of this
thesis.
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the individual subordinate ROCs, but also by the operating point on their ROC used by

each subordinate (Pete, Pattipati, & Kleinman, 1993:2). However, the TAOs were

observed to use a simple voting rule, regardless of reported confidence and subordinate

behavior, throughout most of the trials. For example, if the subordinate reports were

one indication of hostile with high confidence, and two indications of neutral with low

confidence, the TAO would assess the target as neutral. A rigorous Bayesian analysis,

with reasonable values assumed for high and low confidence,17 would indicate that the

target had a higher probability of being hostile (0.592 for the values given in note 17)

than of being neutral. While it is true that in 24% of TAO assessments recorded by the

computer the TAO chose a classification that was not consistent with the straight majority

of subordinate assessments recorded at the time, the TAO assessment was very frequently

based not on the subordinate assessment recorded by the computer, but rather on the

assessments reported verbally. It is therefore assumed in this analysis that the team ROC

was based only on the subordinate ROCs, not on operating points, so that a shift in

operating point alone by the subordinates should not affect the team ROC.

TAO feedback should not change the subordinate ROCs, since the

discriminability of the contact parameter being measured, which is conditionally

independent of the other contact parameters, is unchanged. Consequently, the team ROC

would be expected to be unchanged. The d' measured for the team ROC did, however,

17E.g., a low confidence report of neutral based on the set of observations x might
indicate that P(neutral x) = 0.6, while a high confidence report of hostile might
indicate that P(hostile x) =0.9.
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decline when the TAO provided updates. Since there is no reason to believe that the

team ROC is symmetric, a change in d' does not necessarily represent a change in ROC.

Therefore, Figure 6 shows the No Update and Update points in ROC space, together

with the corresponding boundaries for proper ROCs. The two points could,

unquestionably, be from the same ROC if each fell within the boundaries for proper

ROCs of the other's. This is not observed to be the case here; however, the variance of

the points in space (and hence of the boundary lines) is not known. When the hit and

false-alarm probabilities are calculated individually for each team 19 the standard deviation

is found to be about 0.1 to 0.2, so it is possible that the two points are in fact from the

same ROC, with some slight inaccuracy in their positions shown in ROC space. Indeed,

even when an optimal decision-maker is modeled, and d' measured based on 1000

assessments, the standard deviation in measurement of d' is about 0.2, for n and sn

distributions whose means are separated by 1.88a..

Like information structure (TAO feedback), risk would not be expected to

change the subordinate ROCs or, in the case of an unweighted voting strategy, the team

ROC, but would be expected to change the operating point on the ROCs. In high risk

trials, however, the confidence of subordinates was observed to be used by TAOs on

occasion, and reports of hostile parameters by subordinates were weighted more heavily

"lSThis technique is derived from the ranking procedure described by Norman

(1964).

19Note that this calculation does not give a well refined result: there are only six
hostile contacts for each team for each condition of TAO feedback. Thus there are
only seven possible values for p(Hit I sn) and for p(False-alarm In).
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than reports of neutral parameters2 °. Therefore the shape of the team ROC could alter,

without a change in the shapes of the subordinate ROCs. Certainly, the subordinate

operating point on their ROCs would be expected to change, since the expected cost of

a miss has changed. In the end, the only conclusion that can be readily drawn from this

figure, as expected by the calculated value of d', is that performance in high risk trials

is very close to chance level.

The change in subordinate ROCs with increasing stress corresponds with the

next section of this chapter, and so is not considered further here. The decline in d' with

increasing stress should be attributable to the decrease in information available to the

subordinates, and thus to the accuracy of information reported to the TAO. Note that

there can be no proper ROCs passing through the high stress point, since this represents

performance below the chance level. Performance could have been improved in this case

simply by reversing each decision!

B. RESULTS FOR INDIVIDUAL SUBORDINATE ROLES

During the conduct of the CHIPS experiment, it was noted that the TAO for team

F consistently made his final decision early in the trial, often with 30 seconds to one

minute remaining before the end of the trial. By contrast, most other TAOs waited as

20These observations are based purely on personal observation of all the TAOs.
From the data recorded by the computer, only 43 % of the assessments that were not a
straight majority rule occurred during high risk trials. Again, it should be stressed
that the information available to the TAO recorded by the computer is not necessarily
representative of the information used by the TAO to make his assessment, because of
the large amount of verbal reporting performed, particularly just prior to a TAO
assessment.
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long as they could, to gather as many reports from their subordinates as possible, before

making a final decision. Team F's performance was not outstanding (see Table III), but

it appeared to the observer that subordinate assessments were more accurate than had

been seen with other teams. Indeed, it had appeared that as low stress (three minute)

trials neared completion, subordinate confidence, which had been gradually growing,

started to decline, with frequent reports of low confidence. This lead to the postulation

of the theory that subordinate performance increased with time only up to about 2

minutes into a trial, which corresponds to six or seven probes, at the average subordinate

probe rate of 3.14 probes/minute. Were we seeing another manifestation of the "Magical

Number Seven," which so plagued Miller (1956)?

Extraction of the data from the Event Log Files was required in order to analyze

each individual probe. When the Log File from all the trials are combined, 871 pages

of data are available, of which most is irrelevant. A BASIC language program was

written to extract the important data from these pages, reducing the information to 8,571

events -- either probe or assessment. In addition, since the number of probes available

to the subject at time of assessment was not recorded by the computer, the BASIC

program was designed to report the number of probes that had been made by the same

player during the trial, prior to ten seconds before the assessment2". Since this analysis

"2 This count overestimates the actual number of probes available for assessments
early in the trial. The subjects used the technique of initiating a probe (with its
associated ten second delay) just before assessing the results of the previous probe.
This allowed more frequent probes, because the ten second delay ran concurrently
with the time spent assessing previous probes. However, if more than ten seconds
was spent before logging the assessment, the probe information would be "available,"
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examines only the subordinates, and does not require balanced trials between the

independent variable (indeed the independent variables are ignored as much as possible),

all 32 trials for each team were used.

The first aspect of these data to be examined was how the proportion of correct

assessments varied with time into the trial. Low stress trials were used to give the

longest time period for examination. Time of assessment is recorded to the nearest

second, so the proportion of all assessments recorded for each second that were correct

was calculated. This gives a coarse graph, since there may be very few probes in any

given second, so the data were smoothed. The same smoothing method, a running

average, was used throughout this analysis, for simplicity.' Each value was replaced

by the average of itself and the two adjacent values. This process was repeated as few

times as necessary to give a meaningful plot.

When this analysis was performed (using seven smoothing iterations), the result

was disappointing: see Figure 7a. An initial improvement in performance during the

first minute was followed by widely varying performance that was, nevertheless,

approximately constant with time.

However, as was shown in the previous section, time is not a good analogue for

amount of information available, despite the high correlation observed. Therefore, the

and counted by the BASIC program, even though it would not be shown to the subject

during the assessment in question.
22A better (but more complicated and time-consuming) technique might have been

to perform a Fourier transform of the data, remove high-frequency components, and
then perform an Inverse Fourier transform.
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same analysis was performed using the number of probes available when the assessment

was performed, rather than the time since the start of the trial (see Figr e 7b). This

produced (with only two smoothing iterations) a graph very much as expected, with a

peak in performance at five to six probes.

Recalling the original, informal, observation that confidence reaches a peak and

then declines, the average confidence of subordinate assessments is plotted against

number of probes in Figure 8. Also shown is the number of assessments that were made

based on the given number of probes (for all stress levels). Average confidences are

shown for both low stress trials and all trials, demonstrating the variation with stress

level is minor. Confidence, like accuracy, is seen to peak and then decline, in general,

as the trial progresses. The peak in confidence occurs slightly later than in performance.
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Figure 8: Average Confidence as a Function of Number of Probes.
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As can be seen in Figure 9, the degree to which this effect is seen varies with the

subordinate role. The remainder of this chapter will examine the individual subordinate

roles in detail, looking in particular at how the ease with which hostile and neutral targets

can be distinguished (as measured by d') varies with amount of information available (as

measured by number of probes).

1. Identification Supervisor (IDS)

a. Proportion of Correct Assessments

Figure 9 shows that there is very little variation in the proportion of

correc6 assessments with number of probes for the IDS during low stress trials. Further

analysis will combine stress levels, so that the data may be separated by team yet retain
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Figure 9: Variation of Accuracy with Number of Probes--Subordinates Individually.
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sufficient data for calculation of d'. Figure 10 shows the results for each stress level,

and the average. As can be seen from the figure, and from the analysis shown in

Appendix A, p. 101, there are significant differences between the low, medium and high

stress results (e.g., p=0.078 between high and medium stress, p<0.01 between low and

medium stress). The same analyses do not show any variation with number of probes,

and the plot of average proportion (if correct assessments is relatively flat. Despite these

significant differences with stress, the data were boldly combined in subsequent analysis.

b. Ideal Observer Performance

The task of the IDS follows the form of SDT very closely. This task

consists of distinguishing between two normal, equal variance distributions: one with a

mean value of 40 (a hostile target in CHIPS, n (noise) in SDT) and one with a mean

value of 60 (a neutral target in CHIPS, sn (signal plus noise) in SDT)'. Since the

distributions are both normal, and of equal variance, d' is an appropriate measure of

discriminability between them. One of the advantages of using d' is that, while changes

in the independent variables (in particular risk) may be expected to change the operating

point on the subordinate's ROC, and hence the proportion of correct assessments, they

should not affect the underlying ROC.

'Traditionally, SDT uses a positive signal, so that the distribution with the higher
mean is the sn distribution, and this convention has been preserved here. This
arrangement would reverse the interpretations of "hit" and "false-alarm" in CHIPS.
The solution used is to preserve their correct meanings (e.g., "hit" is the correct
detection of a hostile), and manipulate the calculation of d'. The arrangement itself is
less important than the concept, merely requiring care in the calculations: the check
to make is that, if the probability of a hit is higher than that of a false-alarm (as is
desirable), then d' should be positive.
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The real size of the target is a random variable, constant throughout each

trial. It is derived from one of two distributions: small sizes from a normal distribution

with mean 40 and standard deviation 3; large sizes from a normal distribution with mean

60 and the same standard deviation. Thus even an ideal observer with access to the real

size of the target will not have perfect discriminability: the maximum achievable d' is:

d'J= -A Is- O~n

On

60-40 (V-I)

3
= 62/

Each time the size is probed by the subject, the value displayed is further

corrupted by noise, which is a random value drawn from a normal distribution with mean

0, and standard deviation 20. The ideal observer, then, for each individual probe is

distinguishing between normal distributions with a standard deviation of /(20+ 32) =

V/(409) - 20.2. After N probes, the average of the observed values will have a smaller

standard deviation:

o (N)202 (IV-2)

Therefore, the d' demonstrated by the ideal observer will increase with

the number of observations, up to the maximum value shown in equation (IV-l), as:
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d'(,) -60-,40

32 20W (IV-3)

N

This situation corresponds to the presence of random noise, and constant

noise (i.e., the variability of actual target size), for which the improvement in d' with

N is observed to be less than with random noise in human subjects (Swets, et al., 1959).

The result (see Figure 11) is ideal performance that is not quite proportional to VN, as

it would have been with only random noise present; however, the departure from

linearity is sufficiently slight to be largely irrelevant'.
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Figure 11: Ideal IDS Observer Performance

'This is shown later in Figure 15 on p. 64.
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c. Selection of Averaging Technique

The ideal situation would be to calculate a d' for each subject for each

condition of the independent variables. There were exactly one hostile and one neutral

target (sometimes plus one or two more targets either hostile or neutral, from the set of

eight "distractors") presented to each subject in each condition of the independent

variables. Consequently there were insufficient data to estimate a probability of hit and

probability of false-alarm at each probe for each condition of the independent variables.

Team E, for example, did not have M small, low-stress targets. Even disregarding the

independent variables, as was done, problems with low data counts, or very successful

subjects, were encountered. Not infrequently, even when a significant number of data

existed, there were either perfect hit rates or false-alarm rates (1.0 or 0.0, respectively),

which could not be transformed to Z-scores (which is required for calculation of d').

The hit or false-alarm rate was replaced with 0.99 or 0.01 respectively in these cases,

whenever there were five or more opportunities for a hit or false-alarm.

Grouping of the number of probes in pairs was used to raise the accuracy

of calculation of hit and false-alarm rates, for some analyses (see Figure 12, for

example). However, generally d' could be calculated at each probe.

There are two ways to average data across teams--which is the same as

averaging data across observers-- shown in Figure 12. Either the d" s could be calculated

individually, and then averaged directly, or the hit and false-alarm rates could be

calculated for all cases regardless of team, and these combined rates used to calculate the

"collapsed" d'. The latter technique calculates a more accurate d', since it is based on
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more data, and is less likely to require estimation for perfect hit or false-alarm rates.

However, as Macmillan and Kaplan (1985) explain, it leads to a lower estimation of d',

and the amount of underestimation increases with the difference between the operating

points of the subjects on their ROC. Figure 13 shows the individual operating points for

the six teams in ROC space at one, two, three, and four probes, along with the ROC of

the optimal observer. As can be seen, all observers were relatively close to the ideal

ROC, but appear to be operating with widely different criteria. Consequently, the

collapsed d' calculates a much reduced value, that does not track well with the ideal

observer (see Figure 12). The average of the individual team d"s will therefore be used

in this study.
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Figure 12: Comparison of Average and Collapsed d'.
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d. Results for IDS

The performances of each individual team, by pairs of probes, is shown

in Figure 14, along with the performance of an "ideal observer." As can be seen,

initially performance is somewhat below ideal, and variable. By the 12' probe, there is

less variability (and also fewer teams, since for four of the teams decisions were made

almost always before the tenth probe, which would account for the reduction of

variability) and performance tracks more closely with ideal.

The averaged d' is shown in Figure 15, for individual probes. Again,

ideal performance is shown, with the regression line for the ideal performer plotted.

3.5

3 = A

2.5 B

"2 -- ; C

1.5 D

1 A E

0.5 • F

0 Ideal Observer
1 2 3 4

Sqrt(Number of probes)

Figure 14: Performance of Each IDS vs. Number of Probes

64



3
0,,0

2.5 0 S o Ideal Observer

*2 ' --------- Regression Line

1.5 ,-0 * Observed
1- Average

" ------- Unconstrained

Regression Line
0.5

Regression
0 I I Through d'I

0.5 1.5 2.5 3.5

Sqrt(Number of Probes)

Figure 15: Average IDS Performance, with Two Alternative Regression Lines.

This figure shows how closely ideal performance may be approximated by a straight line.

Two regression lines for the observed data are shown. One is the best fit, unconstrained

regression line. As can be seen, it is very close to being parallel with the ideal line, but

is slightly below it. This would indicate a subject who improves at the same rate as the

ideal observer with increasing numbers of probes, but is uniformly less able to

distinguish between the distributions.

Mathematically, a uniformly lowered d' would imply that the means of

the noise and signal (neutral and hostile) distributions were closer together for the actual

observer than for the ideal observer (see Figure 16). Since the means of the distributions

were well defined (40 and 60), and there is no possibility that the signal perceived by the
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subject differed from the signal presented, as is postulated in psychophysiological Signal

Detection Theory, there would have to be a different mechanism at work here.

3
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Difference of means
reduced from 20 to 16.5 Regression Through0.5 d'1

0 I

0.5 1.5 2.5 3.5

Sqrt(Number of Probes)

Figure 16: Average IDS Performance, Showing Reduced Difference of Means Model.

The closeness of the observed initial d' to the ideal is compelling', and

leads to the second regression line shown in Figure 15. This line is constrained to pass

through the ideal initial d'. Like the first line, the fit is reasonably good, but now the

slope is significantly (p <0. 1) different from the ideal performance (see Appendix A, p.

104). There are many models that would fit this result. An observer able to make each

"25Especially since the initial observed value should be computed nearly accurately,
and need only be compared consistently to a criterion value (e.g., and optimally for
low risk trials, 50) to achieve the optimal d'.
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observation well, but unable to integrate observations optimally, would perform in this

manner. Also, an observer who introduced extra, internal, noise would show similar

behavior. This explanation is compelling, since the requirement to multiply two numbers

in order to arrive at the observation would introduce arithmetic inaccuracies, that could

be represented as internal noise. When the ideal observer is further hindered by

introducing "arithmetic" noise with a mean of 0, and a standard deviation of 5, the

resulting performance is as shown in Figure 17. This is very close to the observed

performance. It is also very unlikely that observers were able to maintain an accurate

running average of observations. Further discussion of strategies is to be found in

Chapter V.

3 0 Ideal Observer

2.5 - .......--- Regression Line

2 * Observed
Average

S1.5 -
--- Unconstrained

1 0e Regression Line

0.5-- Regression
Through dlI

0-
0.5 1.5 2.5 3.5 d ' with extra

Sqrt(Number of Probes) noise

Figure 17: Average IDS Performance, with Extra Noise Model.

An inability to average more than five to nine numbers, as might be

implied by short-term memory limitations (or simply by the fact that only the five most
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recent probe results were displayed to the subject by the computer) would result in

performance that leveled after five to nine probes. While it is difficult to be certain, with

at most ten probes by any subject, the evidence for this limitation is not compelling in

the case of the IDS.

One of the indications that led to tracking d' against the number of

probes was the decline of confidence towards the end of (low stress) trials. Th refore,

it is interesting to compare d' against the reported confidence. The results are shown in

Figure 18. Close agreement can be seen throughout, except for the very last probe. The

correlation coefficient between d' and confidence is 0.679 which, with eight degrees of

freedom, is significant at p < 0.05. This may indicate that the success actually seen on

the last probe is an anomaly, since it is based on the smallest amount of data of any of

the probes. This would significantly change the analysis above.

3
2.15

2.5 1.95

2 1.75 I DS
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0.5 I1.15
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Figure 18: IDS d' Compared to Average Confidence.
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2. Target Identification Coordinator (TIC)

a. Proportion of Correct Assessments

The TIC showed the greatest tendency to peak and then decline in

performance of any of the three subordinates, as seen in Figure 9. Furthermore,

Figure 19 shows that there is very little difference in the proportion of correct

assessments between the different stress levels. Of course, the entire decline past 10

probes is based on very few observations, of only one subject, and cannot be investigated

in terms of d', because there are insufficient data to estimate hit and false-alarm rates

accurately.

S0.9

S0.8 -- High

- - Medium
S0.70 - Low

C06 - Average

0a0.5
0

0.

1 2 3 4 5 6 7 8 9 101112131415

Number of Probes

Figure 19: Proportion of Correct Assessments for TIC, by Level of Stress.

69



b. Ideal Observer Performance

The normative model for the TIC is the most complex of the three

subordinates, and there exist two "optimal" strategies that could be used, one of which

is far more efficient than the other.

Each time the target is probed, a descent rate (random variable D. is

sampled from one of two normal distributions (truncated at +2o): one with a mean of

20 feet per second (the hostile, or sn distribution); the other with a mean of 10 feet per

second (the neutral, or n distribution). Both have a standard deviation of 2.5 feet per

second. The new, actual altitude ai is then calculated from the descent rate and the time

since the last probe ti.

ai = a,-, -Diti (IV-4)

The altitude displayed to the subject, Ai, is the actual altitude, plus an amount of noise

NV sampled from a normal distribution (similarly truncated) with a mean of 0, and a

standard deviation of 50 feet. An initial altitude at time ten seconds (to) is shown in

addition to the altitude at the first probe (to).

The best strategy is to remember the initial altitude, and calculate a

descent rate based on the current altitude, the initial altitude, and the time between them.

Thus the estimate of descent rate for the A' probe, dN, is calculated as:
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AV-4 (IV-5)
tN

The variance of the initial displayed altitude, V(Ao ), is, of course, 502 square feet. The

variance of the AP displayed altitude, V(AN ), is the sum of the variances of the altitude

changes during the intervening probes, and the variance associated with the display of

the altitude (i.e. 502):

N

V(AN) - E t2V(D,) + 501
M=1 (IV-6)
N

= •(2.5ti)2 + 502

The variance of the estimated descent rate, V(dN), is then the sum of the variances of

the two altitudes from which it is calculated, divided by the smiare of the intervening

time:

N

1 (2.5 t!)2 + 2x50 2  (IV-7)

V(dN) = M Q-_ _ __ _

In general, the interval of time between probes is constant, so a reasonable approximation

gives:
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N 2

VQIN) M N ~ Ni2 tN
tN2 N (IV-8)

2.52 + 2x5 02

- +"5 -2×° t,, =. N "

N tN

V(dN) 2.52 + 2x502  (IV-9)

Thus, since d' is inversely proportional to the standard deviation of the estimate of

descent rate, and the altitude rate variance term rapidly comes to dominate, this gives a

graph of d' against the -4fN that is almost perfectly linear.

This strategy was taught to the subjects, which is not to say that it was

used by all subjects. What subjects tended to do, rather than remember the first altitude

and time, was to use the first displayed altitude and time, and the most recent altitude

and time. There were five probe results displayed at a time. There were also some

subjects who considered the concept too difficult, and so used the sub-optimal strategy

that untrained subjects tended to use. In this strategy, the descent rate is calculated for

each probe based on the altitude change since the last probe. This has the same variance

as d•, and can even, with the high variance of altitude display, give an apparent altitude

gain when two probes are taken close together. The altitude rates thus calculated were
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then averaged' to arrive at a final conclusion. Optimal performance with this method,

called the "sub-optimal observer," gives a smaller increase in d' with probes:

V() (2.5 + 2x5o2

?xN
2.52 + 2• 2(IV-10)

4t
N

The difference is that the second term in equation (IV-10) is allowed to accumulate,

where in equation (IV-9) it decayed rapidly with increasing trials because the variance

of intervening altitude reports was not included in the final calculation.

c. Results for TIC

The performance of individual teams is shown in Figure 20a, with the

expected performance of an ideal observer and a "sub-optimal observer." The ideal and

sub-optimal lines are based on average times of probes for the number of probes, reduced

by ten seconds to account for the fact that the initial probe reports A0 for t0=10 in

addition to A,. The results appear to cluster closely to the sub-optimal line, and start in

general well below optimal. As with the IDS, the teams are combined by averaging

individual d"s, rather than using the collapsed d'. The average performance is shown

in Figure 20b; again, a low start is followed by performance that tracks well with sub-

optimal.

"26In so far as any numerical results for the IDS and TIC were averaged. It is
unlikely that symbolic arithmetic averaging took place at all: see earlier discussion on
processes.
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Figure 20: Team and Average Performance of TIC.
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The reduced d' on the first probe cannot indicate internal noise caused

by arithmetic. To have sufficient noise (i.e., a sufficiently high standard deviation of a

zero mean Gaussian noise distribution contributing extra variance to the measurement)

to cause so severe a degradation, the internal noise variance would dominate throughout

the experiment, and no improvement in d' with N would be seen. As with the IDS,

some mechanism causing a reduced perceived difference between the means of the n and

sn distributions would cause an overall decrement in d'. The result of halving the

difference is shown in Figure 21. There is no simple, cognitive explanation for such a

model. It is entirely possible, since in general the first few probes are unimportant

except for gathering preliminary data, that players had a higher error rate because they

simply tended to guess during the first two or three probes. It is also possible that the

effect of using a d' that is collapsed with respect to the independent variables, rather than

averaged, causes a reduced result. This would be the case if the independent variables,

in particular risk, caused markedly different operating points on the ROC for the same

subject. Given the proximity of the first probe to ideal performance for the IDS, it is

debatable whether collapsed d' explains reduced performance for the IDS or TIC.

As noted in describing the ideal observer, most subjects did not

remember the initial altitude, but used the maximum spread of readings available to them

on the screen, which was a maximum of five. This would cap performance as shown

in Figure 22a. The observed performance also matches the capped ideal observer with,

again, a uniform decrement in d' throughout the trial.

75



8

7 Ideal Observer d

6 = Suboptimal
Observer d'5

4 • Average Subject d

3 Ideal Observer d,

2 with decreased
difference

1 between means
0

1 1.5 2 2.5 3 3.5

Sqrt(Number of Probes)

Figure 21: Reduced Difference Between Means Model for TIC.
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Finally, it should be noted that where two strategies are available,

different subjects will likely be using different strategies. Based on the differences

between observed performance and optimal application of the two strategies, it appears

possible that teams A and B used the sub-optimal strategy, while teams C through F used

the ideal strategy. Separating these two groups gives the result shown in Figure 22b.

Teams A and B track the sub-optimal observer with a small, uniform decrement; teams

C through F track the ideal observer, probably with capped performance, with a larger

decrement.

Lastly, the performance of d' is compared again to average reported

confidence. Figure 23a shows the two measures averaged for teams A and B, while

Figure 23b shows them for teams C through F. The correlation is better in the latter

case (r=0.864, significant at p<0.01) than the former (r=0.642, significant at p < 0.05).

3. Electronic Warfare Supervisor (EWS)

a. Proportion of Correct Assessments

Figure 9 showed the EWS having an early peak, followed by a rapid

decline to levels below the initial proportion of correct assessments. There appear in this

graph to be severe limitations on the number of probes that can be successfully

integrated. However, when the other stress levels are examined, as shown in Figure 24,

it is apparent that significant numbers of probes can be successfully integrated, as

demonstrated by medium stress trials. Evidently, there is a wrinkle present in the low

stress data that suggests extreme caution in analyzing the data for the EWS.
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Figure 24: Proportion of Correct Assessments for EWS, by Level of Stress.
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b. Ideal Observer Performance

The EWS is at once the most difficult, and easiest, position for subjects

to play. It is very easy, because the appropriate decision variable is the number of

matches between the received pattern and the hostile pattern, an integer between 0 and

7, which merely needs to be accumulated across probes during the trialzT. The cognitive

demands of adding up a column of numbers between 0 and 7 are not great. However,

the decision criterion is less clear. The IDS could readily use the value 50, and the TIC

the value 30, as cutoff values28, but for an EWS who accumulates matches, the cutoff

value changes from probe to probe, in a manner that is not easy to calculate. Even on

the first probe, since the mean depends on the probability of correct receipt of each bit,

and this probability was not known to the subjects for the hostile distribution, an optimal

criterion value could not be chosen. A very clever EWS with knowledge of the

distributions would have written down the appropriate cutoff values before starting the

trial session, for reference; but none of the subjects had access to the true distributions

(at least of sn) or had the acumen and deviousness to devise such a stratagem.

2'7One subject (team F) was sometimes observed to take three or four probes

without intervening assessment, particularly on low stress trials; then he would
methodically calculate the total number of matches in all the probes displayed, and
make an assessment. The other subjects appeared to use an approach more
"Bayesian" in nature.

"28These values would be modified in high risk trials by an ideal observer.
However, there is evidence that human subjects are very poor at conducting an
optimal likelihood ratio test where prior probabilities and/or payoffs are not
symmetrical, e.g., Kubovy & Healy (1980).
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The n and sn distributions in the case of the EWS are neither normal, nor

equivariant. The n distribution, representative of a neutral, is a binomial, with p=0.5,

and seven Bernoulli trials per probe. Thus, for N probes, the mean of the n distribution

is 3.5 xN, and the variance is 1.75 XN. The sn consists of the same number of Bernoulli

trials, but with p=0.7. Thus its mean is 4.9xN, and its variance 1.47xN. The way

to assess d' for distributions that are not equivaxiant is to measure the distance between

the means in units of the standard deviation of the n distribution. For observed data, d'

is then given by:

d= - - z[P(Hitjsn)] -z[P(FalseAlarmfin)] (IV-11)

(Macmillan & Kaplan, 1985). This assumes that the deviations of the internal

representation of the n and sn distributions are at least in the same proportion as the

actual distributions; an assumption that would be difficult to justify.

c. Results for EWS

The variation with -JN of the ideal observer d' is shown in Figure 25.

Also shown are the observed values for the teams individually, and the average of the

observed values. Note that the dip in performance after eight probes is due entirely to

the spate of appalling performance by team D's EWS. These p-obes are below the

chance level, and can only represent confusion. This single person's confusion accounts

for the dip in d' and, presumably, a large part of the fall in proportion of correct

assessments for between eight and twelve probes (see Figure 24).
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Figure 25: EWS Performance as a Function of Number of Probes; Ideal Observer, by
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The rest of Figure 25 indicates performance that is at least uniformly

below optimal, and generally increasingly so with more probes. This latter behavior has

been seen to be indicative of an extra source of (internal) noise, probably from the

demands of arithmetic.

The relationship between d' and average reported confidence for the EWS

is shown in Figure 26.. The match is reasonably good (r=0.670, p<0.02), the dip in

confidence probably reflecting the confusion nf the team D subject.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. DEPRESSED d'

Two observations were made repeatedly: subject performance did not improve with

increasing number of probes as rapidly as the optimal observer's, and subject

performance was consistently lower than optimal. In some cases, the data best fit one

observation or the other, rather than both--e.g., the IDS data.

There are two possible methods for the subjects to integrate their observations, and

thus two possible explanations for a reduced rate of improvement in d'. First, subjects

may average (or integrate--the strategies are equivalent) the observations, and compare

the average to a criterion value (e.g., 50 for the IDS, 15 for the TIC, 4 for the EWS).

This calculation is one potential source of errors. Alternatively, the subjects may

calculate a likelihood ratio, and accumulate the ratios (multiplicatively) as more probes

are obtained. 9 This can also introduce errors, since the subjects did not know the

variances of the distributions concerned.

"29This fits informal observation of the subjects: a typical comment by a
subordinate might be: "This reading is slightly hostile, but the last two readings were
very neutral, although the one before that was extremely hostile, so I will guess
hostile, with low confidence." Words like "slightly," "very," and "extremely"
express likelihood ratios, which the subject is clearly trying to average in some, non-
numeric, way.
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Randomness in the calculated likelihood ratio, or the criterion used in a LRT,3 °

does not, in itself, change the value of d'; rather it makes the operating point on the

ROC random, which can reduce below optimal the average score or percentage of correct

assessments. However, the calculated d' used in this study is not the average of the d'

for each trial for the given observer. Because the hit and false-alarm probabilities were

calculated for many trials, even if for the same observer, effectively a collapsed d' has

been obtained. If the one observer then uses very different criteria from trial to trial, the

calculated d' will be reduced (Macmillan and Kaplan, 1985). It is thus possible that the

effect of lowered d' being seen in this study and elsewhere (see, for example, the ROCs

obtained in Pete, Pattipati, & Kleinman, 1993:1) are not representative of cognitive

limitations, but only of collapsing data across random criteria.

The solution, as is so often the case, is to increase the amount of data collected.

With more trials under the same conditions, the experimenter can be more confident that

the variance in the comparison criterion used is smaller than when data must be collapsed

across different conditions. Were this done, a probe-by-probe comparison of d' for the

different conditions of the independent variables could be accomplished.

B. IMPORTANCE OF STRATEGIES OF SUBJECTS

The CHIPS experiment is part of a normative-descriptive effort, in which the

performance of human subjects is compared to the optimal performance predicted by the

"30These are equivalent: whether the randomness is on one side of the comparison
or the other the effect is the same.
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normative model. The comparison allows the calculation of values of parameters that

modify the normative model to account for human cognitive limitations (Pete, Pattipati,

& Kleinman, 1993:1).

To be able to determine how to modify the normative model, it is important to

understand the cognitive strategy, or process, being used by the subjects (Payne, 1980).

Payne is concerned with what information the subject uses and with how that
information is used. He guesses that a situation is often processed differently by
the observer than is presumed by the experimenter. He conjectures that, by a
process-tracing procedure, one might learn what information is being used.
(Lockhead, 1980)

While parameters may be found that can be tuned to provide very accurate fits with

observed data, this does not necessarily provide accurate indications on how to improve

performance. It is important that the processes being used in making decisions are

known, and then compared to optimal performance with this same process. This

provides two methods for improving performance: either a different process can be

trained, if optimal performance with the process currently being used falls significantly

below normative performance; or a method can be found to improve the use of the

current process, such as providing computer assistance to overcome cognitive limitations

of the human decision-maker.

C. POTENTIAL IMPROVEMENTS IN EXPERIMENT DESIGN

1. Determination of Process

There are two ways to determine the process being used by subjects. One

is to require subjects to describe what they are thinking throughout the experiment.
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Either this description must be monitored by an observer with sufficient skill and

knowledge to assess the process being used (perhaps from a menu of potential processes,

based on pre-established criteria), or it must be recorded, and later analyzed.

Alternatively, the process to be used can be imposed on the subject. For example,

comparison to a specific value may be required, and the subject told to record the

calculated average of observed values. To compare the imposed process to the processes

naturally selected by subjects would require use of a control and an experimental group:

the control group would spend two, two-hour sessions with the simulator, both with no

process imposed; the experimental group would spend one two-hour session with the

simulator without an imposed process, then be trained on the method to be tested, and

given another two-hour session. If the imposed process is superior to the subject's own,

then the experimental group should show significantly greater improvement in the second

session than the control group.

2. Recording of Data

There were strong indications of recency effects during the experiment--one

TIC, during training, would, for example, alternate with each probe between high

confidence neutral and high confidence hostile, based entirely on the most recent probe.

However, the presence of recency effects could not adequately be tested because the

indications given to the subject were not recorded in the Log File.
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3. Generation of Stress

The fact that fewer probes were made during higher stress trials confounds

the investigation of the effect of stress. There are other ways to increase stress without

necessarily changing the probe rate or total number of probes. Increasing the number

of targets of interest would increase the stress without changing the length of a trial, but

would most likely reduce the number of probes per target. A distractor task could be

introduced, and made progressively more demanding, although again this could reduce

probe rate. One method that would not reduce the probe rate is to limit the duration that

probe measurements remain visible, and shorten the duration for higher stress levels.

There are also ways to ensure that probe rate is not greatly affected, even if

one of the first two methods is used. Probing could become an automatic function, so

that the subject need only make an assessment each time he is presented with a probe.

Of course, this would remove probe rate as a dependent variable.

4. Change in Computer Screen Layout

The graphics display of aircraft, which is a vital element in DDD-ll, is

completely irrelevant in CHIPS, except insofar as it distinguished between subjects on

the basis of manual dexterity with a mouse. The window displaying the results of probes

could remain open continuously, if probe information were allowed to appear in it

without having to close and re-open the window.

Similarly, the TAO fusion window could remain open if subordinate

assessments were able to appear in the open window. This would have the distinct

advantage that the information being used by the TAO to make his assessment would be
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the same as the information that the computer recorded as being available. This could

be further enhanced: just as it would be desirable for the Log File to record the

measurements presented to the subordinates on which a decision was made, it would also

be desirable for the assessments shown to the TAO to be recorded with his fused

assessment based on them.

The problem of conflicting information available to the TAO between that

recorded in the computer and that reported over the intercom could be avoided in one of

two ways--by disabling one or the other input. If the intercom were removed, the

problem would similarly be removed. TAO update could still be studied as an

independent variable, by having the computer report the TAO's assessment to the

subordinates each time one is made during update trials. Alternatively, the automatic

presentation of subordinate assessments to the TAO could be removed, requiring him

instead to record on his fusion screen the latest (verbal) report from each subordinate,

as a part of making his assessment.

D. CONCLUSIONS

It was found that subordinates were less able to distinguish between hostile and

neutral indications than the optimal observer, and that the discrepancy tended to increase

with time. This could be attributed to: arithmetic capability limitations of subjects, poor

judgment of distribution variance, or simply to the fact that the measure used is

artificially lowered when probabilities are averaged for observations using significantly

different criteria. Further work is needed to develop a method for determining the
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cognitive process employed by decision-makers, so that they may be replaced or

supplemented to improve performance. While the processes used by subjects in the

abstraction of a command center present here are not necessarily relevant to any military

application, the methods by which they are determined could be applied in assessing and

improving actual command centers.
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APPENDIX A: STATISTICAL ANALYSES

A. RESULTS BY TEAM

1. Comparison to Chance Performance

a. Improvement of Performance Durng the Trial - The McNemar Test

Final assessments by each team were compared to initial assessments to

determine whether the extra time spent probing and reporting on the target contributed

to extra correct assessments. A simple comparison of proportions (or numbers) (e.g.,

by the large sample normal approximation for comparison of proportions) would be

unrevealing in this case. However the data are naturally paired, leading to the McNemar

test, as described in Pratt & Gibbons (1981, p. 108).

The McNemar test examines cases in which subjects are classed by a

dichotomous test (e.g., right/wrong assessment) twice--once before and once after a

treatment. The null hypothesis tested is that the treatment has no effect on the outcome

of the test. F,,ir counts are determined: (A) the number of subjects who were, for

example, wrong on both tests, (B) the number who changed from wrong to right, (C) the

number who changed from right to wrong, and (D) the number who were right on both

tests. The first and last counts (A and D) are, for this test, irrelevant. Now, the null

hypothesis can be equivalently stated as: of those subjects who were right on one test and

wrong on the other, the probability that they changed from wrong to right vice right to

wrong is 0.5. This is tested simply using the Binomial test (either one-tailed or two-
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tailed, as appropriate for the theory being tested): if the smaller of B or C (as appropriate

for the tail being tested, for a one-tailed test) is less than or equal to the critical value for

a (lower- or two-tailed) Binomial test, where the number of trials is the sum of B and C,

then the null hypothesis is rejected.

In the present case, a one-tailed test is to be performed, looking for

significantly more trials which turned an initial guess that was wrong into one that was

right than vice versa. Since teams A, B and F all declined in performance, and C

showed no change, no further investigation of these teams is required. For D and E, the

results are summarized in Table VI, showing significant effect in both cases.

TABLE VI: MCNEMAR TEST FOR IMPROVED PERFORMANCE

Team D Initial Assessment
Wrong Right

Final Assessment Wrong [ j 2
Right 5 11

Critical value (p=0.1): 2

Initial Assessment
Wrong Right

Final Assessment Wrong 5J 4

Right 8 7
Critical value (p=0.1): 4
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b. Effect of Team on Time and Probes at Frit Assessment

The significance of the differences in times to first assessment by the six

teams was ,'to:d with ANOVA, using Tukey's procedure to determine pairs of teams

with significantly different times. The Minitab output is shown in Table VII.

TABLE VII: VARIANCE OF TIME TO FIRST ASSESSMENT WITH TEAM

ANALYSIS OF VARIANCE ON time
SOURCE DF SS MS F p
team 5 7204.8 1441.0 34.84 0.000
ERROR 177 7321.4 41.4
TOTAL 182 14526.2

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV ---------+------ - --- - ---------------+

1 32 39.563 7.670 (---*.-)

2 30 46.300 6.803
3 31 40.194 5.443 (-*---)

4 31 43.032 5.250
5 32 42.094 7.222
6 27 58.778 5.625

------------ ------------------------
POOLED STDEV = 6.431 42.0 49.0 56.0

Tukey's pairwise comparisons

Family error rate = 0.0500

Individual error rate = 0.00445

Critical value = 4.07

Intervals for (column level mean) - (row level mean)

1 2 3 4 5

2 -11.441
-2.034

3 -5.296 1.366
4.033 10.847

4 -8.134 -1.473 -7.540
1.195 8.008 1.863

5 -7.159 -0.498 -6.565 -3.726
2.096 8.910 2.764 5.603

6 -24.052 -17.388 -23.457 -20.618 -21.521
-14.378 -7.568 -13.712 -10.873 -11.847
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The same method was used to analyze the data for number of subordinate

probes. Again, Minitab output is shown in Table VIII.

TABLE VIII: VARIANCE OF NUMBER OF PROBES WITH TEAM

ANALYSIS OF VARIANCE ON NumProbe
SOURCE DF SS MS F p
Team 5 193.97 38.79 17.19 0.000
ERROR 177 399.45 2.26
TOTAL 182 593.42

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STOEV -------------------------------------
32 7.844 1.780

S30 9.533 1.676
3 31 6.871 1.147 (-"*....)

4 31 8.645 1.170
5 32 6.844 1.725 ("" "*-"")
6 27 9.037 1.344

------------- 4----------

POOLED STDEV = 1.502 7.2 8.4 9.6

Tukey's pairwise comparisons

Family error rate = 0.0500
Individual error rate = 0.00445

Criticat value = 4.07

Intervals for (cotuimn level mean) - (row level mean)

1 2 3 4 5

2 -2.788
-0.591

3 -0.117 1.555
2.062 3.770

4 -1.891 -0.219 -2.872
0.288 1.995 -0.676

5 -0.081 1.591 -1.062 0.712
2.081 3.788 1.117 2.891

6 -2.323 -0.651 -3.304 -1.530 -3.323
-0.064 1.643 -1.028 0.746 -1.064
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c. Relation Between Time at First Assessment and Number of Correct

Initial Assessments

Three methods were used to attempt to demonstrate a relation between

the average time at which the TAO makes his first assessment, and the number of correct

initial assessments by the TAO. The Pearson correlation coefficient between the time

and number was calculated, giving r=0.43. To be significant at p=0.1, with 4 degrees

of freedom (sample size - 1), r would have to be at least 0.729 (Snedecor and Cochran,

1980, p. 477). There is no reason to believe that the distribution of either variable is

normal, however; so the use of the Pearson correlation coefficient is suspect. Indeed,

the distribution of the time at first assessment is positively (in the technical sense) skewed

(see Figure 27 for the distribution, and ? for the normal probability plot). Consequently,

the correlation between the ranks of the teams based on time at, and success of, first

probe was calculated, giving the Spearman rank correlation coefficient. In this case,

r,=0.40. To be significant at p=0.1, with sample size 6, requires r, be at least 0.771.

100

80

o 60o/

40,

~20t

20 40 60 80 100
Tome of Fwa As.senot

Figure 27: Distribution of Time to First Assessment.
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Figure 28: Normal Probability Plot of Time to First Assessment.

Lastly, a randomization method was used. Given a set of six teams

ranked one to six on one measure, there are only 720 different ways in which the teams

may be ranked on a second measure31. The degree of similarity in the two rankings is

expressed by the sum of the absolute differences in rank between the two measures,

3'This presentation neglects the possibility of ties. There are several methods
available for handling ties. In the present treatment, each of the possible assignments
of the affected ranks to the teams was tried, and the largest difference calculated by
this method used in the analysis. This is a conservative method. For example, if the
ranks were 1, 2=, 2=, 4, 5=, 5=: the rankings tried were 1, 2, 3, 4, 5, 6; 1, 2, 3,
4, 6, 5; 1,3,2,4,5,6; and 1, 3, 2, 4, 6, 5.
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across the six teams. The 720 possible random assignments are easily enumerated (a

BASIC language program was used) and the sum of absolute differences calculated (see

Table IX). From these values, a cumulative distribution function for the Sum of

Absolute Differences of Rank statistic is readily calculated for the null hypothesis of

random distribution of ranks.

TABLE IX: RANDOMIZATION TEST FOR RANKS 1 TO 6

Sum of
AbsoluteAboue 0 2 4 6 8 10 12 14 16 18Differences of
Rank

Frequency of
Random 1 5 18 46 93 137 48 136 100 36
Occurrence

Cumulative 1 6 24 70 163 300 448 584 684 720
Frequency

Cumulative 0.1 0.8 3.3 9.7 23 42 62 81 95 100
Probability (%)

The critical values are then read (approximately) from the table. For

p=0.1, any value of 6 or less is significant. At p=0.05 (actually 0.033), any value of

4 or less is significant. At p=0.01 (actually 0.008), any value of 2 or less is significant.

For the relation between time of first assessment and number of correct

initial assessments, the sum of absolute differences of rank calculated is 8 or 10,

depending on the assignment of ranks to the two ties. Thus this statistic also fails to

demonstrate a significant relationship.
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d. Relation Between Number of Subordinate Probes at First Assessment

and Number of Correct Initial Assessments

The Pearson Correlation Coefficient r=0.88, which is significant at

p=0.05. The Spearman Rank Correlation Coefficient r,=0.83, significant at p=0.1.

The sum of absolute differences of rank is 2, 4 or 6 depending on the random assignment

for ties, giving p < 0.1.

2. Effect of Independent Variables

The McNemar test was again used to assess the effect of each independent

variable individually (see p. 92 above for a description of this test). The pairing of the

data is less obvious in this case. Consider, for example, the case of TAO feedback:

each team saw 24 balanced trials (and eight distractor trials, omitted from this analysis),

in half of which the TAO provided updates, and half of which he did not. In each group

of twelve, every combination of risk (two levels), stress (three levels), and contact

classification (two levels: neutral or hostile) was seen exactly once. Therefore the trials

can be paired based on these three factors (plus team), and the effect of TAO updates

examined within the pairs. The results are presented in Table X.

B. RESULTS FOR INDIVIDUAL SUBORDINATE ROLES

1. Effect of Stress Level on Variation of Proportion of Correct Assessments

with Number of Probes

The proportions of correct assessments were transformed with the angle

transformation for proportions (arc sin(v/p)), and analyzed with ANOVA and Student's
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TABLE X: MCNEMAR TESTS FOR EFFECT OF INDEPENDENT VARIABLES

TAO No update Level of
Update: Significance:

Number of Wrong Right p=0.15
Assessments

Wrong 15 19
Update Right 14 24

Risk: Low Level ofSignificance:

Number of Wrong Right p=0.1
Assessments

Wrong 14 21
High Right 14 23

Level ofStress: Low Significance:

Number of Wrong Right p=0.1
Assessments

Wrong 8 13Medium_______ __

Right 7 20

Level ofMedium Significance:

Number of Wrong Right p=0.1
Assessments

Wrong 11 16
Right 10 11

Level of
Low Significance:

Number of Wrong Right p=0.1
Assessments

Wrong 11 16
Right 4 17
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t-test. Because the number of values at each level of stress are different (there were a

maximum of four probes for which useful proportions could be calculated at high stress,

ten at medium stress, and 15 at low stress), analysis of variance had to be performed

separately for the first four probes, using all stress levels, and for the first ten probes,

using only medium and low stress. The t-test was performed between pairs of stress

levels.

a. Results for IDS

The t-tests and results of ANOVA for the IDS are shown in Tables XI,

XII and XIII. There are significant differences between the proportions, particularly

between low and medium stress trials. Meanwhile, the number of probes does not

appear to have a significant effect on the proportion of correct assessments, at least

during the first ten probes.

TABLE XI: SIGNIFICANCE LEVELS OF T-TESTS BETWEEN PAIRS OF
STRESS LEVELS FOR IDS

p-values Low Medium

High 0.347 0.078

Medium <0.01
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TABLE XII: ANOVA FOR IDS TRANSFORMED PROPORTIONS OF CORRECT
ASSESSMENTS, ALL LEVELS OF STRESS, FIRST FOUR PROBES

Anova: Two-Factor Without Replication

Summary Count Sum Average Variance

Stress: High 4 247.829 61.9573 52.9902

Medium 4 215.766 53.9416 0.31434

Low 4 218.103 54.5258 13.588

Number of 1 3 162.959 54.3198 12.6665
probes: 2 3 167.696 55.8987 21.4449

3 3 166.426 55.4754 1.1501

4 3 184.617 61.5391 98.1918

ANOVA

Source of Variation: SS df MS F P-value F crit

Rows 159.759 2 79.8797 4.47308 0.06469 5.14325

Columns 93.5305 3 31.1768 1.74583 0.2569 4.75706

Error 107.147 6 17.8579

Total 360.437 11
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TABLE XIII: ANOVA FOR IDS TRANSFORMED PROPORTIONS OF CORRECT
ASSESSMENTS, LOW AND MEDIUM STRESS, FIRST TEN PROBES

Anova: Two-Factor Without Replication

Summary Count Sum Average Variance

Stress Medium 10 524.079 52.4079 3.09984
Level: Low 10 581.312 58.1312 14.4908

Number 1 2 105.038 52.5191 5.87767
of 2 2 106.55 53.2748 1.58174

Probes:
3 2 110.116 55.0581 1.25555

4 2 112.166 56.0828 17.7583

5 2 113.409 56.7047 36.4692

6 2 112.597 56.2985 52.4689

7 2 110.835 55.4177 64.6846

8 2 110.416 55.2081 55.5344

9 2 110.97 55.4852 34.2719

10 2 113.293 56.6466 17.5175

ANOVA

Source of Variation SS df MS F P-value F crit

Rows 163.778 1 163.778 11.9215 0.00724 5.11736

Columns 34.6739 9 3.85266 0.28044 0.96401 3.1789

Error 123.642 9 13.738

Total 322.094 19
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2. FItting Regression Lines to Observed Data

a. IDS

Linear regression was used to fit the lines shown in Figure 15 (and

following figures). The results of fitting the ideal observer points are shown in Table

XIV. The line can be seen to have a slope of about 0.86.

TABLE XIV: REGRESSION ANALYSIS FOR IDEAL IDS

Regression Ideal Observer
Statistics

Multiple R 0.99921

R Square 0.99843

Adjusted R Square 0.99823

Standard Error 0.02568

Observations 10

Analysis of Variance

df Sum of Mean F Significance F
Squares Square

Regression 1 3.35627 3.35627 5087.8 1.7e-12

Residual 8 0.00528 0.00066

Total 9 3.36154

Coefficients Standard t Statistic P-value Lower Upper
Error 95% 95%

Intercept 0.16734 0.02834 5.90482 0.00023 0.10199 0.23269

xl 0.86193 0.01208 71.3288 1.le-13 0.83406 0.8898
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The results for fitting the observed data, without constraining the

intercept, are shown in Table XV. The slope of the ideal observer is seen to be within

the 95 % confiuence limits for the slope of the regression line, so the hypothesis that the

slopes are the same is not rejected at the 5 % significance level.

TABLE XV: UNCONSTRAINED REGRESSION OF OBSERVED IDS DATA

Regression Observed
Statistics

Multiple R 0.90939

R Square 0.82698

Adjusted R Square 0.80536

Standard Error 0.2457

Observations 10

Analysis of Variance

df Sum of Mean
Squares Square F Significance F

Regression 1 2.30834 2.30834 38.2387 0.00026

Residual 8 0.48293 0.06037

Total 9 2.79127

Coefficients Standard t Statistic P-value Lower Upper
Error 95% 95%

Intercept 0.13333 0.2711 0.4918 0.63463 -0.4918 0.75847

xl 0.71482 0.1156 6.18375 0.00016 0.44825 0.98138
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To constrain the regression line to pass through the initial ideal d' the

axes were shifted, and a regression line fitted through the origin. The result is shown

in Table XVI. The intercept is meaningless, since the axes have not been shifted back.

However, the slope is meaningful, and the fact that the value of the ideal observer slope

does not fall within the 99% confidence interval indicates that the two slopes are

different, significant at the 0.01 level.
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TABLE XVI: REGRESSION FOR IDS DATA, CONSTRAINED TO PASS
THROUGH INITIAL IDEAL POINT

Regression
Statistics Through d'1

Multiple R 0.90055

R Square 0.81099

Adjusted R
Square 0.69988

Standard
Error 0.24211

Observations 10

Analysis of Variance

Sum of Mean
df Squares Square F Significance F

Regression 1 2.26371 2.26371 38.6174 0.00026

Residual 9 0.52757 0.05862

Total 10 2.79127

Standard Lower Upper
Coefficients Error t Statistic P-value 95% 95%

Intercept 0 0 0 0 0 0

xl 0.62732 0.05405 11.6057 4.0e-07 0.50504 0.74959

Lower Upper 99
99 % %

Intercept 0 0

xl 0.45166 0.80298
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APPENDIX B: RAW DATA EXAMPLES

A. DEPENDENT VARIABLE FILE

Team name: a Team name: a
Experiment condition: 11111 Experiment condition: 11124
True class: 1 True class: 2
Final assessement: 1 Final assessement: 2
Final Score: 1 Final Score: 1
Final Confidence: 2 Final Confidence: 2
Time remaininig at final Time remaininig at final
decision: 13.000000 decision: 13.000000
Number of leader's log entries: 6 Number of leader's log entries: 7
Number of leader's queries: 0 Number of leader's queries: 0
Number of leader's opinion Number of leader's opinion
changes: I changes: 0
Initial assessment of DMO: 2 Initial assessment of DMO: 2
Initial confidence of DMO: 1 Initial confidence of DMO: 1
Total number of probes: 35 Total number of probes: 36
Probe rate: 0.187166 Probe rate: 0.192513
Number of probes by DM1: 11 Number of probes by DMI: 12
Number of probes by DM2: 10 Number of probes by DM2: 11
Number of probes by DM3: 14 Number of probes by DM3: 13
Number of log entries by DM1: 10 Number of log entries by DM1: 10
Number of log entries by DM2: 14 Number of log entries by DM2: 12
Number of log entries by DM3: 12 Number of log entries by DM3: 12
Total number of subordinates' Total number of subordinates'
log: 36 log: 34
Initial assessment of DM1: 2 Initial assessment of DMI: 2
Initial assessment of DM2: 1 Initial assessment of DM2: 1
Initial assessment of DM3: 1 Initial assessment of DM3: 2
Initial confidence of DM1: 1 Initial confidence of DM1: 1
Initial confidence of DM2: I Initial confidence of DM2: 1
Initial confidence of DM3: I Initial confidence of DM3: 1
Final assessment of DM1: 1 Final assessment of DMl: 2
Final assessment of DM2: 1 Final assessment of DM2: 1
Final assessment of DM3: 2 Final assessment of DM3: 2
Final confidence of DMI: 2 Final confidence of DM1: 1
Final confidence of DM2: 1 Final confidence of DM2: 1
Final confidence of DM3: 2 Final confidence of DM3: 2
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B. EVENT LOG FILE

filename: log 11124.b
2 2013 32.000000

S2 0 201 1 3
1 2010 12.000000 0.000000 0.000000 0.000000

0 9992.000000 0.000000 0.000000 1*2.00000 0.000000 0.000000 1 2010 35.000000
201 1 10.000000 0.000000 0 999
1 2.000000 0.000000 0.000000

2 2010 13.000000 201 1 10.000000 0.000000

1 999 1
2.000000 0.000000 0.000000 3
201 2 10.000000 0.000000 3 0 201 1 1

0.000000 0.000000 0.000000

3 2010 15.000000 22 999 *
2.000000 0.000000 0.000000 2 2010 36.000000
201 3 10.000000 0.000000 1 9991 2.000000 0.000000 0.000000
1 . 201 2 10.000000 0.000000

2 2013 19.000000 1

2 0 201 0 1 3 2010 39.000000
0.000000 0.000000 0.000000 2 999
2 2.000000 0.000000 0.000000

1 2010 73.000000 201 3 10.000000 0.000000

0 999 1
2.000000 0.000000 0.000000 0
201 1 10.000000 0.000000 0 4 201 1 1
1 -0.000000 0.000000 0.000000

2 2010 25.000000 1

1 999
2.000000 0.000000 0.000000
201 2 10.000000 0.000000
1

3 2010 27.000000
2 999
2.000000 0.000000 0.000000
201 3 10.000000 0.000000
1
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